K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2023

 

Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\)

\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)

\(B=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}\) \(\Rightarrow A< \dfrac{99}{100}\)

\(1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-...-\dfrac{1}{100^2}=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\right)=1-A>\dfrac{1}{100}\)

 

 

14 tháng 7 2023

Ta đặt

  \(A=\dfrac{7}{1\times2}+\dfrac{7}{2\times3}+...+\dfrac{7}{99\times100}\)

\(\dfrac{1}{7}\times A=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+....+\dfrac{1}{99\times100}\)

\(\dfrac{1}{7}\times A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\dfrac{1}{7}\times A=1-\dfrac{1}{100}\)

\(\dfrac{1}{7}\times A=\dfrac{99}{100}\)

\(A=\dfrac{99}{100}\div\dfrac{1}{7}\)

\(A=\dfrac{693}{100}\)

14 tháng 7 2023

= 7.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100)

= 7.(1 - 1/100)

= 7 . 99/100

= 693/100

2A=1-1/2+1/2^2-...+1/2^98-1/2^99

=>3A=1-1/2^100

=>\(A=\dfrac{2^{100}-1}{3\cdot2^{100}}\)

25 tháng 7 2021

Đặt A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\)

Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2},\dfrac{1}{3^2}< \dfrac{1}{2.3},...,\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(A\)<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

A<\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

A<\(1-\dfrac{1}{100}=\dfrac{99}{100}\)(đpcm)

Ta có: \(\dfrac{1}{2^2}>\dfrac{1}{2.3},\dfrac{1}{3^2}>\dfrac{1}{3.4},...,\dfrac{1}{100^2}>\dfrac{1}{100.101}\)

A>\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{100.101}\)

A>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

A>\(\dfrac{1}{2}-\dfrac{1}{101}=\dfrac{99}{202}\)(đpcm)

Vậy \(\dfrac{99}{100}>A>\dfrac{99}{202}\)

 
17 tháng 9 2023

\(\left(\dfrac{1}{2^2}-1\right)\times\left(\dfrac{1}{3^2-1}\right)\times\left(\dfrac{1}{4^2}-1\right)\times...\times\left(\dfrac{1}{100^2}-1\right)\)

\(=\dfrac{3}{2^2}\times\dfrac{8}{3^2}\times\dfrac{15}{4^2}\times...\times\dfrac{100^2-1}{100^2}\)

\(=\dfrac{1\times3}{2\times2}\times\dfrac{2\times4}{3\times3}\times\dfrac{3\times5}{4\times4}\times...\times\dfrac{99\times101}{100\times100}\)

\(=\dfrac{1\times2\times3\times...\times99}{2\times3\times4\times...\times100}\times\dfrac{3\times4\times5\times...\times101}{2\times3\times4\times...\times100}\)

\(=\dfrac{1}{100}\times\dfrac{101}{2}\)

\(=\dfrac{101}{200}\)

 

17 tháng 9 2023

\(\left(\dfrac{1}{2^2}-1\right)\cdot\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)

\(=\dfrac{-3}{4}\cdot\dfrac{-8}{3}\cdot...\cdot\dfrac{-9999}{10000}\)

\(=\dfrac{1\cdot\left(-3\right)}{2\cdot2}\cdot\dfrac{2\cdot\left(-4\right)}{3\cdot3}\cdot...\cdot\dfrac{99\cdot\left(-101\right)}{100\cdot100}\)

\(=\dfrac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\cdot\dfrac{\left(-3\right)\cdot\left(-4\right)\cdot...\cdot\left(-101\right)}{2\cdot3\cdot4\cdot...\cdot100}\)

Ở tử số phân số bên phải có số thừa số là: \(101-3+1=99\)

99 là số lẻ nên tử số vế phải sẽ cho ra số âm.

\(=\dfrac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\cdot\dfrac{3\cdot4\cdot5\cdot...\cdot\left(-101\right)}{2\cdot3\cdot4\cdot...\cdot100}\)

\(=\dfrac{1\cdot\left(-101\right)}{100\cdot2}\)

\(=\dfrac{-101}{200}\)

5 tháng 12 2023

A = (\(\dfrac{1}{2}\) + 1).(\(\dfrac{1}{3}\) + 1).(\(\dfrac{1}{4}\) + 1)...(\(\dfrac{1}{99}\) + 1)

A = \(\dfrac{1+2}{2}\).\(\dfrac{1+3}{3}\).\(\dfrac{1+4}{4}\)...\(\dfrac{1+99}{99}\)

A = \(\dfrac{3}{2}\).\(\dfrac{4}{3}\).\(\dfrac{5}{4}\)....\(\dfrac{100}{99}\)

A = \(\dfrac{100}{2}\) \(\times\) \(\dfrac{3.4.5...99}{3.4.5...99}\)

A = 50

10 tháng 5 2021

Mình làm được một câu thôi, bạn dựa vào làm nha!undefined