Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(2018^{2018}(2019^{2019}+2019)=2018^{2018}.2019^{2019}+2018^{2018}.2019<2018^{2018}.2019^{2019}+2019^{2018}.2019 \)
\(< 2018^{2018}.2019^{2019}+2019^{2019}.2018\)
\(\Leftrightarrow 2018^{2018}(2019^{2019}+2019)< 2019^{2019}(2018^{2018}+2018)\)
\(\Rightarrow \frac{2018^{2018}}{2019^{2019}}< \frac{2018^{2018}+2018}{2019^{2019}+2019}\)
Giải trâu:
Xét \(A-B=\dfrac{a^{2018}-b^{2018}}{a^{2018}+b^{2018}}-\dfrac{a^{2019}-b^{2019}}{a^{2019}+b^{2019}}\)
\(=\dfrac{\left(a^{2018}-b^{2018}\right)\left(a^{2019}+b^{2019}\right)-\left(a^{2018}+b^{2018}\right)\left(a^{2019}-b^{2019}\right)}{\left(a^{2018}+b^{2018}\right)\left(a^{2019}+b^{2019}\right)}\)
\(=\dfrac{a^{4037}+a^{2018}b^{2019}-a^{2019}b^{2018}-b^{4037}-a^{4037}+a^{2018}b^{2019}-a^{2019}b^{2018}+b^{4037}}{\left(a^{2018}+b^{2018}\right)\left(a^{2019}+b^{2019}\right)}\)
\(=\dfrac{2a^{2018}b^{2019}-2a^{2019}b^{2018}}{\left(a^{2018}+b^{2018}\right)\left(a^{2019}+b^{2019}\right)}=\dfrac{2a^{2018}b^{2018}\left(b-a\right)}{\left(a^{2018}+b^{2018}\right)\left(a^{2019}+b^{2019}\right)}\)
\(\Rightarrow\)Nếu \(a>b\Rightarrow b-a< 0\Rightarrow A-B< 0\Rightarrow A< B\)
Nếu \(a< b\Rightarrow b-a>0\Rightarrow A-B>0\Rightarrow A>B\)
\(A=\dfrac{2020^{2018}-1}{2020^{2019}+2019}\)
\(B=\dfrac{2020^{2019}+1}{2020^{2020}+2019}\)
Ta có :
\(A-B=\dfrac{2020^{2018}-1}{2020^{2019}+2019}-\dfrac{2020^{2019}+1}{2020^{2020}+2019}\)
\(\Rightarrow A-B=\dfrac{\left(2020^{2018}-1\right)\left(2020^{2020}+2019\right)-\left(2020^{2019}+2019\right)\left(2020^{2019}+1\right)}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)
\(\Rightarrow A-B=\dfrac{2020^{4038}+2019.2020^{2018}-2020^{2020}-2019-2020^{4038}-2020^{2019}-2019.2020^{2018}-2029}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)
\(\Rightarrow A-B=\dfrac{-\left(2020^{2020}+2020^{2019}+2.2019\right)}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)
mà \(\left\{{}\begin{matrix}-\left(2020^{2020}+2020^{2019}+2.2019\right)< 0\\\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)>0\end{matrix}\right.\)
\(\Rightarrow A-B< 0\)
\(\Rightarrow A< B\)
Vậy ta được \(A< B\)
x2019-2019.x2018+2019.x2018+2019.x2017-2019.x2016+......2019.x-200 Tại x=2018
Giúp mik vs nhé
Sai đề nên t sửa luôn nhé!
Vì \(x=2018\Rightarrow2019=2018+1=x+1\)
\(A=x^{2017}-2019\cdot x^{2018}+2019\cdot x^{2017}-2019\cdot x^{2016}+....+2019\cdot x-200\)
\(\Rightarrow A=x^{2019}-\left(x+1\right)x^{2018}+\left(x+1\right)x^{2017}-\left(x+1\right)x^{2016}+....-\left(x+1\right)x^2+\left(x+1\right)x-200\)
\(\Rightarrow A=x^{2019}-x^{2019}-x^{2018}+x^{2018}+x^{2017}-x^{2017}-x^{2016}+....-x^3-x^2+x^2+x-200\)
\(\Rightarrow A=x-200=2018-200=1818\)
\(\dfrac{2018^{2019}.4^{2018}}{1009^{2019}.8^{2019}}\)
=\(\dfrac{2018^{2019}.4^{2018}}{1009^{2019}.\left(2.4\right)^{2019}}\)
=\(\dfrac{2018^{2019}.4^{2018}}{1009^{2019}.2^{2019}.4^{2019}}\)
=\(\dfrac{2018^{2019}.4^{2018}}{\left(1009.2\right)^{2019}.4^{2019}}\)
=\(\dfrac{2018^{2019}.4^{2018}}{2018^{2019}.4^{2019}}\)
=\(\dfrac{1}{4}\)