Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}+\dfrac{1}{x^2-11x+30}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}+\dfrac{1}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-4}+\dfrac{1}{x-4}-\dfrac{1}{x-5}+\dfrac{1}{x-5}-\dfrac{1}{x-6}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{1}{x-6}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{x-6-x+2}{\left(x-2\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4}{\left(x-2\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow32=\left(x-2\right)\left(x-6\right)\)
\(\Leftrightarrow32=x^2-8x+12\)
\(\Leftrightarrow x^2+8x-20=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=10\end{matrix}\right.\)
bạn xem lại nhé
cái này là pt có chứa ẩn ở mẫu nên phải có điều kiện, đối chiếu điều kiện và từ dòng có pt chứa ẩn ở mẫu sang dòng có pt đưa dc về dạng ax+b=0 thì dùng dấu ''=>'' nhé
\(\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}+\dfrac{1}{x^2-11x+30}=\dfrac{1}{8}\)
ĐKXĐ: x khác 2;3;4;5;6
\(\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2-11x+30}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}+\dfrac{1}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-4}+\dfrac{1}{x-4}-\dfrac{1}{x-5}+\dfrac{1}{x-5}-\dfrac{1}{x-6}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x-6}-\dfrac{1}{x-2}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{x+6-x+2}{\left(x-2\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4}{\left(x-2\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow32=x^2-8x+12\)
\(\Leftrightarrow x^2+8x-20=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=10\end{matrix}\right.\)
a: \(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
=>\(\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
=>(x+4)(x+7)=54
=>x^2+11x+28-54=0
=>(x+13)(x-2)=0
=>x=-13 hoặc x=2
b: \(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-...+\dfrac{1}{x+4}-\dfrac{1}{x+5}=\dfrac{1}{3}\)
=>\(\dfrac{x+5-x-1}{\left(x+5\right)\left(x+1\right)}=\dfrac{1}{3}\)
=>x^2+6x+5=12
=>x^2+6x-7=0
=>(x+7)(x-1)=0
=>x=-7 hoặc x=1
a.
\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)
\(\Leftrightarrow x\left(x+1\right).\left(x-1\right)\left(x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)
Đặt \(a=x^2+x-1\) , ta có pt:
\(\left(a+1\right)\left(a-1\right)-24=0\)
\(\Leftrightarrow a^2-1-24=0\)
\(\Leftrightarrow a^2-25=0\)
\(\Leftrightarrow\left(a-5\right)\left(a+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=5\\a=-5\end{matrix}\right.\)
*Với a = 5 ta được:
\(x^2+x-1=5\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2+3x-2x-6=0\)
\(\Leftrightarrow\left(x^2+3x\right)-\left(2x+6\right)=0\)
\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
*Với a = -5 ta được:
\(x^2+x-1=-5\)
\(\Leftrightarrow x^2+x+4=0\)
\(\Leftrightarrow x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{15}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\) ( loại)
Vậy pt có tập nghiệm là: \(s=\left\{-3;2\right\}\)
c)(ĐKXĐ: x khác 30;29)
\(\Leftrightarrow\dfrac{x-29}{30}-1+\dfrac{x-30}{29}-1=\dfrac{29}{x-30}-1+\dfrac{30}{x-29}-1\)
\(\Leftrightarrow\dfrac{x-59}{30}+\dfrac{x-59}{29}=\dfrac{x-59}{30-x}+\dfrac{x-59}{29-x}\)
\(\Leftrightarrow x=59\)(tm) or \(\dfrac{1}{30}+\dfrac{1}{29}-\dfrac{1}{30-x}-\dfrac{1}{29-x}=0\)
\(\Leftrightarrow\dfrac{-x}{30\left(30-x\right)}+\dfrac{-x}{29\left(29-x\right)}=0\)
\(\Leftrightarrow x=0\)(tm) or \(\dfrac{1}{30\left(30-x\right)}+\dfrac{1}{29\left(29-x\right)}=0\)
\(\Leftrightarrow1741-59x=0\)
\(\Leftrightarrow x=\dfrac{1741}{59}\left(tm\right)\)
Vậy S={0;\(\dfrac{1741}{59}\);59}
$ĐKXĐ:x \neq -4;-5;-6;-7$
$pt⇔\dfrac{1}{x^2+4x+5x+20}+\dfrac{1}{x^2+5x+6x+30}+\dfrac{1}{x^2+6x+7x+42}=\dfrac{1}{18}$
$⇔\dfrac{1}{(x+4)(x+5)}+\dfrac{1}{(x+5)(x+6)}+\dfrac{1}{(x+6)(x+7)}=\dfrac{1}{18}$
$⇔\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}$
$⇔\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}$
$⇔\dfrac{3}{(x+4)(x+7)}=\dfrac{1}{18}$
$⇔x^2+11x+28=54$
$⇔x^2+11x-26=0$
$⇔x^2-2x+13x-26=0$
$⇔(x-2)(x+13)=0$
$⇔$ \(\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)(t/m)
Vậy phương trình đã cho có tập nghiệm $S=(2;-13)$
Ta có:
\(x^2+9x+2x=\left(x+4\right)\left(x+5\right)\)
\(x^2+11x+30=\left(x+6\right)\left(x+5\right)\)
\(x^2+13x+42=\left(x+6\right)\left(x+7\right)\)
ĐK: \(\left\{{}\begin{matrix}x\ne-4\\x\ne-5\\x\ne-6\\x\ne-7\end{matrix}\right.\)
pt \(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{18\left(x+7\right)}{18\left(x+4\right)\left(x+7\right)}-\dfrac{18\left(x+4\right)}{18\left(x+4\right)\left(x+7\right)}=\dfrac{\left(x+4\right)\left(x+7\right)}{18\left(x+4\right)\left(x+7\right)}\)
\(\Rightarrow18\left(x+7\right)-18\left(x+4\right)=\left(x+4\right)\left(x+7\right)\)
\(\Leftrightarrow\left(x+13\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+13=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=2\end{matrix}\right.\) (tm)
24:
\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
\(\Leftrightarrow\left(x+2\right)\left(x+6\right)=8\left(x+6\right)-8\left(x+2\right)\)
\(\Leftrightarrow x^2+8x+12=8x+48-8x-16=32\)
=>(x+10)(x-2)=0
=>x=-10 hoặc x=2
25: \(\Leftrightarrow\dfrac{\left(x+1\right)^2+1}{x+1}+\dfrac{\left(x+4\right)^2+4}{x+4}=\dfrac{\left(x+2\right)^2+2}{x+2}+\dfrac{\left(x+3\right)^2+3}{x+3}\)
\(\Leftrightarrow x+1+\dfrac{1}{x+1}+x+4+\dfrac{4}{x+4}=x+2+\dfrac{2}{x+2}+x+3+\dfrac{3}{x+3}\)
\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{4}{x+4}=\dfrac{2}{x+2}+\dfrac{3}{x+3}\)
\(\Leftrightarrow x+5=0\)
hay x=-5
d: ĐKXĐ: x<>-4; x<>-5; x<>-6; x<>-7
\(PT\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
=>\(\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
=>\(\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
=>x^2+11x+28=54
=>x^2+11x-26=0
=>(x+13)(x-2)=0
=>x=2 hoặc x=-13
e: \(\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-166}{23}=10\)
\(\Leftrightarrow\left(\dfrac{x-241}{17}-1\right)+\left(\dfrac{x-220}{19}-2\right)+\left(\dfrac{x-195}{21}-3\right)+\left(\dfrac{x-166}{23}-4\right)=0\)
=>x-258=0
=>x=258
\(\Leftrightarrow\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+3}-\dfrac{1}{x+6}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{x+6-x-3}{\left(x+3\right)\left(x+6\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow x^2+9x+18=54\)
\(\Leftrightarrow x^2+9x-36=0\)
=>(x+12)(x-3)=0
=>x=-12 hoặc x=3
\(ĐKXĐ:x\ne-3,-4,-5,-6\)
\(\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}=\dfrac{1}{18}\\ \Leftrightarrow\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{18}\\ \Leftrightarrow\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{18}\\ \Leftrightarrow\dfrac{1}{x+3}-\dfrac{1}{x+6}=\dfrac{1}{18}\\ \Leftrightarrow\dfrac{x+6-x-3}{\left(x+3\right)\left(x+6\right)}=\dfrac{1}{18}\\ \Leftrightarrow\dfrac{3}{x^2+9x+18}=\dfrac{1}{18}\\ \Leftrightarrow x^2+9x+18=54\)
\(\Leftrightarrow x^2+9x-36=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-12\left(tm\right)\end{matrix}\right.\)