Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1
a. = 7/3. ( 37/5 - 32/5)
= 7/3 . 1
= 7/3
Phần b có gì đó sai sao lại có 3:+
c. = 4 + 6 - 3 + 5
= 12
d. = -5/21 : -19/21 : 4/5
= 25/76
B2
a. 1/4 : x =1/2 - 3/4
x = -1/4
x = 1/4 : -1/4
x = -1
b. 2 . | 2x - 3 | = 4 - (-8)
2 . | 2x - 3| = 12
| 2x - 3 | = 12:2
| 2x - 3 | = 6
| x - 3 | = 6:2
| x - 3 | = 3
=> x - 3 = +- 3
* x - 3 = 3
x = 6
* x - 3 = -3
x = 0
Chúc bạn vui vẻ
\(\sqrt{484}-\dfrac{1}{\sqrt{5}}< \sqrt{529}-\dfrac{1}{19}< \sqrt{576}-\dfrac{1}{\sqrt{7}}< \sqrt{625}-\dfrac{1}{\sqrt{8}}\)
a: \(=\left(\dfrac{1}{4}+\dfrac{3}{4}\right)\cdot\dfrac{18}{5}-\dfrac{6}{5}:\dfrac{-9}{5}+4\)
\(=\dfrac{18}{5}-\dfrac{6}{5}\cdot\dfrac{-5}{9}+4\)
\(=\dfrac{18}{5}+\dfrac{2}{3}+4\)
\(=\dfrac{124}{15}\)
b: \(=\dfrac{9}{25}\cdot\left(\dfrac{3}{5}-\dfrac{1}{5}+\dfrac{1}{2}\right)-\dfrac{3}{8}:\dfrac{9}{8}\)
\(=\dfrac{9}{25}\cdot\dfrac{4}{10}-\dfrac{1}{3}\)
\(=-\dfrac{71}{375}\)
c: \(=\dfrac{7}{10}:\dfrac{4}{5}+\dfrac{2}{9}:\dfrac{5}{9}+\dfrac{1}{8}\)
\(=\dfrac{7}{10}\cdot\dfrac{5}{4}+\dfrac{2}{5}+\dfrac{1}{8}\)
=1+2/5
=7/5
d: \(=\dfrac{3}{7}\left(19+\dfrac{1}{3}-33-\dfrac{1}{3}\right)-\dfrac{2}{7}=\dfrac{3}{7}\cdot\left(-14\right)-\dfrac{2}{7}=-6-\dfrac{2}{7}=\dfrac{-44}{7}\)
e: \(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{-2^{11}\cdot3^{11}-2^{12}\cdot3^{12}}\)
\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{-2^{11}\cdot3^{11}\left(1+2\cdot3\right)}=-\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot7}=\dfrac{-4}{7}\)
#Giải:
a)\(\sqrt{27}\)+\(\sqrt{75}\)-\(\sqrt{\dfrac{1}{3}}\)=8\(\sqrt{3}\)-\(\sqrt{\dfrac{1}{3}}\)=\(\dfrac{23\sqrt{3}}{3}\).
b)\(\sqrt{4+2\sqrt{3}}\)-\(\sqrt{4-2\sqrt{3}}\)=2.
c)\(\dfrac{3}{\sqrt{7}+\sqrt{2}}\)+\(\dfrac{2}{3+\sqrt{7}}\)+\(\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)=1,093+\(\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)=2,507.
a) = \(3\sqrt{3}+5\sqrt{3}-\dfrac{1}{\sqrt{3}}\)
= \(3\sqrt{3}+5\sqrt{3}-\dfrac{3}{\sqrt{3}}\)
= \(\dfrac{23\sqrt{3}}{3}\)
b) = \(\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
= \(1+\sqrt{3}-\left(\sqrt{3}-1\right)\)
= \(1+\sqrt{3}-\sqrt{3}+1\)
= 2
c) = \(\dfrac{3\left(\sqrt{7}-\sqrt{2}\right)}{5}+\dfrac{2\left(3-\sqrt{7}\right)}{2}+\left(2-\sqrt{2}\right)\left(\sqrt{2}+1\right)\)
= \(3\sqrt{7}-3\sqrt{2}+3-\sqrt{7}+2\sqrt{2}+2-2-\sqrt{2}\)
= \(\dfrac{3\sqrt{7}-3\sqrt{2}}{5}+3-\sqrt{7}+\sqrt{2}\)
= \(\dfrac{3\sqrt{7}-3\sqrt{2}-5\sqrt{7}+5\sqrt{2}}{5}+3\)
= \(\dfrac{-2\sqrt{7}+2\sqrt{2}}{5}+3\)
\(\approx2,5\)
19) \(\sqrt{19-x}=19\)
\(\Rightarrow\sqrt{19-x}=\sqrt{19^2}\)
\(\Rightarrow19-x=19^2\)
\(\Rightarrow19-19^2=x\)
\(\Rightarrow x=19\left(1-19\right)=-19.18=-342\)
21) \(\sqrt{x-1}=\dfrac{1}{3}\)
\(\Rightarrow\sqrt{x-1}=\sqrt{\left(\dfrac{1}{3}\right)^2}\)
\(\Rightarrow x-1=\dfrac{1}{3^2}\)
\(x=\dfrac{1+9}{9}=\dfrac{10}{9}\)
24)\(\sqrt{2x+\dfrac{5}{4}}=\dfrac{3}{2}\)
\(\Rightarrow\sqrt{2x+\dfrac{5}{4}}=\sqrt{\left(\dfrac{3}{2}\right)^2}\)
\(\Rightarrow2x+\dfrac{5}{4}=\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)
\(\Rightarrow2x=\dfrac{9-5}{4}=1\)
\(\Rightarrow x=0,5\)
25) \(\sqrt{\dfrac{x}{3}-\dfrac{7}{6}}=\dfrac{1}{6}\)
\(\Rightarrow\sqrt{\dfrac{2x-7}{6}}=\sqrt{\left(\dfrac{1}{6}\right)^2}\)
\(\Rightarrow\dfrac{2x-7}{6}=\left(\dfrac{1}{6}\right)^2=\dfrac{1}{36}\)
\(\Rightarrow\dfrac{12x-42}{36}=\dfrac{1}{36}\)
\(\Rightarrow12x-42=1\)
\(\Rightarrow12x=43\)
\(\Rightarrow x=\dfrac{43}{12}\)
1.
0,2 . \(\sqrt{100}\) - \(\sqrt{\dfrac{16}{25}}\)
= 0,2 . 10 - \(\dfrac{4}{5}\)
= 2 - \(\dfrac{4}{5}\)
= \(\dfrac{6}{5}\)
1/ \(0,2.\sqrt{100}-\sqrt{\dfrac{16}{25}}\)
\(=0,2.10-0,8\)
\(=2-0,8=1,2\)
2/ \(\dfrac{2^7.9^3}{6^5.8^2}\)
\(=\dfrac{93312}{497664}=\dfrac{3}{16}=0,1875\)
3/ \(\sqrt{0,01}-\sqrt{0,25}\)
\(=0,1-0,5\)
\(=-0,4\)
4/ \(0,5.\sqrt{100}-\sqrt{\dfrac{1}{4}}\)
\(=0,5.10-0,5\)
\(=5-0,5=4,5\)
5/ \(7.\sqrt{0,01}+2.\sqrt{0,25}\)
\(=7.0,1+2.0,5\)
\(=0,7+1=1,7\)
6/ \(0,5.\sqrt{100}-\sqrt{\dfrac{1}{25}}\)
\(=0,5.10-0,2\)
\(=5-0,2=4,8\)
a) \(7-\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}=7\)
\(\Rightarrow x=\left(\sqrt{7}\right)^2\)
b) \(5\sqrt{x}+1=40\)
\(\Rightarrow5\sqrt{x}=39\)
\(\Rightarrow\sqrt{x}=7,8\)
\(\Rightarrow x=\left(\sqrt{7,8}\right)^2\)
c) \(\dfrac{5}{12}\sqrt{x}-\dfrac{1}{6}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{5}{12}\sqrt{x}=\dfrac{1}{2}\)
\(\Rightarrow\sqrt{x}=1,2\)
\(\Rightarrow x=\left(\sqrt{1,2}\right)^2\)
d) \(4x^2-1=0\)
\(\Rightarrow\left(2x-1\right)\left(2x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=0\Rightarrow x=0,5\\2x+1=0\Rightarrow x=-0,5\end{matrix}\right.\)
e) \(\sqrt{x+1}-2=0\)
\(\Rightarrow\sqrt{x+1}=2\)
\(\Rightarrow x+1=1,414\)
\(\Rightarrow x=0,414\)
f) \(2x^2+0,82=1\)
\(\Rightarrow2x^2=0,18\)
\(\Rightarrow x^2=0,09\)
\(\Rightarrow x=\pm0,3\)
g) Không có kết quả
Bài1:
Ta có:
a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)
c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)
Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
Bài 2:
Không có đề bài à bạn?
Bài 3:
a)\(\sqrt{x}-1=4\)
\(\Rightarrow\sqrt{x}=5\)
\(\Rightarrow x=\sqrt{25}\)
\(\Rightarrow x=5\)
b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)
Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)
\(\Rightarrow\left(x-1\right)^2=16\)
\(\Rightarrow\left(x-1\right)^2=4^2\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\)
a)\(\sqrt{\dfrac{3^2}{7^2}}=\sqrt{\dfrac{9}{49}}=\sqrt{\dfrac{3}{7}}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{91^2}}=\dfrac{\sqrt{9}+\sqrt{1521}}{\sqrt{49}+\sqrt{8281}}=\dfrac{3+39}{7+91}=\dfrac{42}{98}\)
c)Tương tự câu b, ta đc:
\(\dfrac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\dfrac{3-39}{7-91}=\dfrac{-36}{86}=\dfrac{3}{7}\)
d)Tương tự câu a, ta đc:
\(\dfrac{\sqrt{39^2}}{\sqrt{91^2}}=\dfrac{39}{91}\)
Chúc Bạn Học Tốt!!!
a) \(\sqrt{\dfrac{3^2}{7^2}}=\sqrt{\left(\dfrac{3}{7}\right)^2}=\left|\dfrac{3}{7}\right|=\dfrac{3}{7}\)
b) \(\dfrac{\sqrt{3}^2+\sqrt{39}^2}{\sqrt{7}^2+\sqrt{91}^2}=\dfrac{\left|3\right|+\left|39\right|}{\left|7\right|+\left|91\right|}=\dfrac{3+39}{7+91}=\dfrac{42}{98}=\dfrac{3}{7}\)
c) \(\dfrac{\sqrt{3}^2-\sqrt{39}^2}{\sqrt{7}^2-\sqrt{91}^2}=\dfrac{\left|3\right|- \left|39\right|}{\left|7\right|-\left|91\right|}=\dfrac{3-39}{7-91}=\dfrac{-36}{-84}=\dfrac{3}{7}\)
d) \(\sqrt{\dfrac{39^2}{91^2}}=\sqrt{\left(\dfrac{39}{91}\right)^2}=\left|\dfrac{39}{91}\right|=\dfrac{39}{91}=\dfrac{3}{7}\)
\(\dfrac{1}{\sqrt{48-7}}=\dfrac{1}{\sqrt{41}}=\dfrac{\sqrt{41}}{41}\)
\(\dfrac{1}{\sqrt{48}-\sqrt{7}}=\dfrac{\sqrt{48}+\sqrt{7}}{\left(\sqrt{48}-\sqrt{7}\right)\left(\sqrt{48}+\sqrt{7}\right)}=\dfrac{\sqrt{48}+\sqrt{7}}{41}\)
Ta có
\(\sqrt{41}< \sqrt{48}+\sqrt{7}\Rightarrow\dfrac{1}{\sqrt{48-7}}< \dfrac{1}{\sqrt{48}-\sqrt{7}}\)