\(\dfrac{1}{38}\)+ \(\dfrac{1}{40}\)+\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2017

\(\dfrac{1}{38}>\dfrac{1}{40}>\dfrac{1}{42}>...>\dfrac{1}{50}\)

=>\(\dfrac{1}{38}+\dfrac{1}{40}+\dfrac{1}{42}+\dfrac{1}{44}+\dfrac{1}{46}+\dfrac{1}{48}+\dfrac{1}{50}< 7\cdot\dfrac{1}{38}=\dfrac{7}{38}< 1\)

Vậy tổng trên bé hơn 1

A=-1-3-5-...-2017

=-(1+3+5+...+2017)

Xét tổng B=1+3+5+...+2017

Tổng B có:(2017-1):2+1=1009(số hạng)

Tổng B=\(\dfrac{\left(2017+1\right)\cdot1009}{2}=1009\cdot1009=1018081\)

=>A=-B=-1018081

6 tháng 5 2017

bn cho mk hỏi tai sao B lai = 1+3+5+..+2017 vay bn?

29 tháng 6 2018

Từ 2 giả thiết: \(a+b+c=2018;\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{6}{2018}\)

\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{2018.6}{2018}=6\)

\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=6\)

\(\Leftrightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=6\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=3\)

Vậy giá trị của biểu thức đó là 3.

11 tháng 4 2017

Ta có : \(\dfrac{1}{9}=\dfrac{1}{9}\)

\(\dfrac{1}{10}< \dfrac{1}{9}\)

.....

\(\dfrac{1}{19}< \dfrac{1}{9}\)

\(\Rightarrow\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{19}< \dfrac{1}{9}+\dfrac{1}{9}+...+\dfrac{1}{9}\)

\(\Leftrightarrow\dfrac{1}{9}+\dfrac{1}{10}+..+\dfrac{1}{19}< \dfrac{11}{9}\)

Hay \(\dfrac{1}{9}+\dfrac{1}{10}+..+\dfrac{1}{19}< \dfrac{9}{9}=1\)

11 tháng 4 2017

Đặt biểu thức trên là A.

Ta có A có 11 số hạng, chia A thành 2 nhóm, mỗi nhóm có 5 số hạng còn thừa 1 số hạng như sau:

\(A=\dfrac{1}{9}+\left(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{14}\right)+\left(\dfrac{1}{15}+\dfrac{1}{16}+...+\dfrac{1}{19}\right)\)

Lại có: \(\dfrac{1}{10}=\dfrac{1}{10};\dfrac{1}{11}< \dfrac{1}{10};...;\dfrac{1}{14}< \dfrac{1}{10}\) \(\Rightarrow\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{14}< \dfrac{1}{10}+\dfrac{1}{10}+...+\dfrac{1}{10}\) (5 số hạng)

\(\Rightarrow\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{14}< \dfrac{1}{10}.5=\dfrac{1}{2}\) (1)

\(\dfrac{1}{15}=\dfrac{1}{15};\dfrac{1}{16}< \dfrac{1}{15};...;\dfrac{1}{19}< \dfrac{1}{15}\)

\(\Rightarrow\dfrac{1}{15}+\dfrac{1}{16}+...+\dfrac{1}{19}< \dfrac{1}{15}+\dfrac{1}{15}+...+\dfrac{1}{15}\) (5 số hạng)

\(\Rightarrow\dfrac{1}{15}+\dfrac{1}{16}+...+\dfrac{1}{19}< \dfrac{1}{15}.5=\dfrac{1}{3}\)(2)

\(\dfrac{1}{9}=\dfrac{1}{9}\left(3\right)\)

Từ (1) và (2) ta suy ra:

\(\dfrac{1}{9}+\left(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{14}\right)+\left(\dfrac{1}{15}+\dfrac{1}{16}+...+\dfrac{1}{19}\right)< \dfrac{1}{9}+\dfrac{1}{2}+\dfrac{1}{3}\) \(\Rightarrow A< \dfrac{1}{9}+\dfrac{1}{2}+\dfrac{1}{3}\)

\(\Rightarrow A< \dfrac{2}{18}+\dfrac{9}{18}+\dfrac{6}{18}\)

\(\Rightarrow A< \dfrac{2+9+6}{18}\)

\(\Rightarrow A< \dfrac{17}{18}< \dfrac{18}{18}=1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

26 tháng 6 2017

Trước tiên ta nên tìm kết quả :

=> có 99 số số hạng

Tổng của kết quả đó là : 

( 99 + 1 ) . 99 : 2 = 4950

Vậy ta có : 2-(x+3) = 4950

x+3 = 2 - 4950

x+3 = -4948

x = -4948 - 3

x = -4951

26 tháng 6 2017

2-x-3 = (1+99) +(2+98)+...+( 49+51)+ 50

-1-x = 10+10 +..+ 10 + 50

-1-x = 490+50

-x= 540 + 1

-x = 541

=> x= -541

10 tháng 7 2017


a) 3^200 và 2^300
ta có:3^200=3^2x100=(3^2)^100=9^100
         2^300=2^3x100=(2^3)^100=8^100
vì 9>8 =>9^100>8^100
=>3^200>2^200
vậy...
b)125^5 và 25^7
ta có:125^5=(5^3)^5=5^15
         25^7=(5^2)^7=5^14
vì 15>14 =>5^15>5^14
=>125^5>25^7
vậy.....
c)9^20 và 27^13 
ta có:9^20=(3^2)^20=3^40
        27^13=(3^3)^13=3^39
vì 40>39 => 3^40>3^39
=>9^20>27^13
vậy....
d)3^54 và 2^81
ta có:3^54=3^6x9=(3^6)^9=729^9
        2^81=2^9x9=(2^9)^9=512^9
vì 729>512 =>729^9>512^9
=> 3^54>2^81
vậy.....
e)10^30 và 2^100
ta có: 10^30=10^3x10=(10^3)^10=1000^10
          2^100=2^10x10=(2^10)^10=1024^10
vì 1000<1024 =>1000^10<1024^10
=> 10^30<2^100
vậy....
f)5^40 và 620^10
ta có:5^40=5^4x10=(5^4)^10=625^10
vì 625>620 =>625^10>620^10
=>5^40>620^10
vậy....
ĐÓ LÀ CÁCH LÀM CỦA TỚ NẾU THẤY ĐÚNG THÌ K NHA.
 

10 tháng 7 2017

a) 3^200 = (3^2)^100 = 9^100

2^300 = (2^3)^100 = 8 ^100

Do 9>8 =>9^100 > 8^100=> 3^200> 2^300

b) 125^5 = (5^3)5 = 5^15

25^7 =  ( 5^2)^7 = 5^14 

Do 5^15 > 5^14 => 125^5 > 25^7 

10 tháng 3 2016

Ta có:

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(=1-\frac{1}{51}=\frac{50}{51}\)

\(\Rightarrow A=\frac{50}{51}:2=\frac{25}{51}\)

29 tháng 6 2018

Ta có 

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)  < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 - \(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 - \(\frac{1}{2018}\)\(\frac{2017}{2018}\)< 1

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 ( dpcm )

29 tháng 6 2018

Ta có:

\(\frac{1}{2^2}\)\(\frac{1}{1.2}\).

\(\frac{1}{3^2}\)\(\frac{1}{2.3}\).

\(\frac{1}{4^2}\)\(\frac{1}{3.4}\).

...

\(\frac{1}{2017^2}\)\(\frac{1}{2016.2017}\).

\(\frac{1}{2018^2}\)\(\frac{1}{2017.2018}\).

Từ trên ta có:

\(\frac{1}{2^2}\)\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+...+ \(\frac{1}{2017^2}\)\(\frac{1}{2018^2}\)\(\frac{1}{1.2}\)\(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+...+ \(\frac{1}{2016.2017}\)\(\frac{1}{2017.2018}\)= 1- \(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+...+ \(\frac{1}{2016}\)\(\frac{1}{2017}\)\(\frac{1}{2017}\)\(\frac{1}{2018}\)= 1- \(\frac{1}{2018}\)< 1.

=> \(\frac{1}{2^2}\)\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+...+ \(\frac{1}{2017^2}\)\(\frac{1}{2018^2}\)< 1.

=> ĐPCM.

6 tháng 2 2017

Ta có : MSC : 396

\(\frac{3}{44}=\frac{3\cdot9}{44\cdot9}=\frac{27}{396}\)

\(\frac{-11}{18}=\frac{-11\cdot22}{18\cdot22}=\frac{-242}{396}\)

\(\frac{5}{-36}=\frac{-5}{36}=\frac{-5\cdot11}{36\cdot11}=\frac{-55}{396}\)