\(\dfrac{100}{x}-\dfrac{100}{x+10}=\dfrac{1}{2}\)

giải pt

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2021

`100/x-100/(x+10)=1/2`
`<=>(100x+1000-100x)/(x^2+10x)=1/2`
`<=>1000/(x^2+10x)=1/2`
`<=>x^2+10x=2000`
`<=>x^2+10x-2000=0`
`Delta'=25+2000=2025`
`<=>x_1=40,x_2=-50`
Vậy `S={40,-50}`

3 tháng 6 2021

100x−100x+10=12100x-100x+10=12
⇔100x+1000−100xx2+10x=12⇔100x+1000-100xx2+10x=12
⇔1000x2+10x=12⇔1000x2+10x=12
⇔x2+10x=2000⇔x2+10x=2000
⇔x2+10x−2000=0⇔x2+10x-2000=0
Δ'=25+2000=2025Δ′=25+2000=2025
⇔x1=40,x2=−50⇔x1=40,x2=-50
-> S={40,−50}

6 tháng 6 2018

x^2-3x+2=(x-1)(x-2)

dk x≠1;2

1+(x-5)(x-1)=3/10(x^2-3x+2)

10+10x^2-60x+50=3x^2-9x+6

7x^2-54x-54=0

x=(27±3√123)/7

6 tháng 6 2018

\(\dfrac{1}{x^2-3x+2}-\dfrac{x-5}{2-x}=\dfrac{3}{10}\)

\(\dfrac{1}{x^2-x-2x+2}+\dfrac{x-5}{x-2}=\dfrac{3}{10}\)

\(\dfrac{10}{10\left(x-1\right)\left(x-2\right)}+\dfrac{10\left(x-5\right)\left(x-1\right)}{10\left(x-1\right)\left(x-2\right)}=\dfrac{3\left(x^2-3x+2\right)}{10\left(x-1\right)\left(x-2\right)}\)( x # 1 ; x # 2)

⇔ 10 + 10( x2 - 6x + 5)= 3(x2 - 3x + 2)

⇔ 10 + 10x2 - 60x + 50 = 3x2 - 9x + 6

⇔ 7x2 - 51x - 54 = 0

Phân tích ra

17 tháng 4 2018

15

\(\dfrac{7}{x-2}\)+\(\dfrac{8}{x-5}\)=3 (x khác 2 khác 5)

\(\Leftrightarrow\)7*(x-5)+8(x-2)=3(x-2)(x-5)

\(\Leftrightarrow\)15x-51=3x^2-21x+30\(\Leftrightarrow\)3x^2-36x+81=0

\(\Leftrightarrow\)\(\begin{matrix}&\end{matrix}\)\(\left[{}\begin{matrix}9\\3\end{matrix}\right.\) tmđk

16\(\dfrac{x^2-3x+6}{x^2-9}\)=\(\dfrac{1}{x-3}\)(x khác +_3)

\(\Leftrightarrow\)x^2-3x+6=x+3

\(\Leftrightarrow\)x^2-4x+3=0\(\Leftrightarrow\)\(\left[{}\begin{matrix}3loại\\1\end{matrix}\right.\)

vậy x=1 là nghiệm của pt

25 tháng 4 2018

17 \(\dfrac{3}{x^2-4}\) = \(\dfrac{1}{x-2}+\dfrac{1}{x+2}\)

<=> x + 2 + x - 2 = 3

<=> 2x = 3

<=> x = \(\dfrac{3}{2}\)

21 tháng 9 2018

a)\(\dfrac{2}{x^2-1}+\dfrac{1}{x+1}=2\) Điều kiện:x#1,-1

\(\Leftrightarrow\dfrac{2}{\left(x+1\right)\left(x-1\right)}+\dfrac{1}{x+1}=2\\\)

\(\Leftrightarrow\dfrac{2+x-1}{\left(x+1\right)\left(x-1\right)}=2\)

\(\Leftrightarrow\dfrac{1}{x-1}=2\)

\(\Leftrightarrow1=2\left(x-1\right)\)

\(\Leftrightarrow2x=3\)

\(\Leftrightarrow x=\dfrac{3}{2}\)

b)\(1-\dfrac{12}{x^2-4}=\dfrac{3}{x+2}\) Điều kiện:x#2,-2

\(\Leftrightarrow\dfrac{x^2-4-12}{x^2-4}=\dfrac{3}{x+2}\)

\(\Leftrightarrow x^2-16=3\left(x-2\right)\)

\(\Leftrightarrow x^2-16-3x+6=0\)

\(\Leftrightarrow x^2-3x-10=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Vậy \(S=\left\{5\right\}\)

b: \(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-1\right)\left(x+2\right)}=\dfrac{-4x^2+11x-2}{\left(x+2\right)\left(x-1\right)}\)

\(\Leftrightarrow x^2+4x+4+4x^2-11x+2=0\)

\(\Leftrightarrow5x^2-7x+6=0\)

hay \(x\in\varnothing\)

c: \(\Leftrightarrow\left(3x^2+2\right)^2-5x\left(3x^2+2\right)=0\)

=>3x^2-5x+2=0

=>3x^2-3x-2x+2=0

=>(x-1)(3x-2)=0

=>x=2/3 hoặc x=1

NV
3 tháng 3 2019

a/ ĐKXĐ: \(x\ge-1\)

\(\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-6\sqrt{x+1}+9}=2\sqrt{x+1-2\sqrt{x+1}+1}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-3\right)^2}=2\sqrt{\left(\sqrt{x+1}-1\right)^2}\)

\(\Leftrightarrow\sqrt{x+1}+1+\left|\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)

- Nếu \(\sqrt{x+1}\ge3\Leftrightarrow x\ge8\) pt trở thành:

\(\sqrt{x+1}+1+\sqrt{x+1}-3=2\sqrt{x+1}-2\)

\(\Leftrightarrow-2=-2\) (đúng)

- Nếu \(\sqrt{x+1}-1\le0\Leftrightarrow-1\le x\le0\) pt trở thành:

\(\sqrt{x+1}+1+3-\sqrt{x+1}=2-2\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{x+1}=-1< 0\) (vô nghiệm)

- Nếu \(0< x< 8\) pt trở thành:

\(\sqrt{x+1}+1+3-\sqrt{x+1}=2\sqrt{x+1}-2\)

\(\Leftrightarrow\sqrt{x+1}=3\Rightarrow x=8\left(l\right)\)

Vậy nghiệm của pt đã cho là \(x\ge8\)

NV
3 tháng 3 2019

b/ ĐKXĐ: \(x\ge\dfrac{-1}{4}\)

Đặt \(\sqrt{x+\dfrac{1}{4}}=t\ge0\Rightarrow x=t^2-\dfrac{1}{4}\) pt trở thành:

\(t^2-\dfrac{1}{4}+\sqrt{t^2+t+\dfrac{1}{4}}=2\)

\(\Leftrightarrow t^2-\dfrac{1}{4}+\sqrt{\left(t+\dfrac{1}{2}\right)^2}=2\)

\(\Leftrightarrow t^2+t+\dfrac{1}{4}-2=0\)

\(\Leftrightarrow4t^2+4t-7=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1+2\sqrt{2}}{2}\\t=\dfrac{-1-2\sqrt{2}}{2}< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=t^2-\dfrac{1}{4}=\left(\dfrac{-1+2\sqrt{2}}{2}\right)^2-\dfrac{1}{4}=2-\sqrt{2}\)

Vậy pt có nghiệm duy nhất \(x=2-\sqrt{2}\)

19 tháng 3 2017

a. Pt đã cho tương đương với:
\(\sqrt{3x-2}=\sqrt{x+7}+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\3x-2=x+7+1+2\sqrt{x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\2x-10=2\sqrt{x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\x-5=\sqrt{x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\x^2-10x+25=x+7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\x^2-11x+18=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\\left(x-2\right)\left(x-9\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\\left[{}\begin{matrix}x=2\\x=9\end{matrix}\right.\end{matrix}\right.\)(Loại )
\(\Leftrightarrow x=9\)
Vậy pt có nghiệm x =9

19 tháng 3 2017

b. Đk: \(x\ne1;y\ne2\)
Đặt \(\dfrac{1}{x-1}=a;\dfrac{1}{y-2}=b\)
Khi đó hệ đã cho trở thành:
\(\left\{{}\begin{matrix}a+b=2\\-3a+2b=1\end{matrix}\right.\)
Giải hệ trên tìm a,b rồi từ đó tìm được x;y. Nhớ đối chiếu với Đk trước khi kết luận.

31 tháng 8 2018

a) điều kiện xác định : \(x\ne\pm1\)

ta có : \(\dfrac{1}{x-1}-\dfrac{2}{x+1}=\dfrac{4}{x^2-1}\Leftrightarrow\dfrac{x+1-2x+2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x^2-1}\)

\(\Leftrightarrow\dfrac{3-x}{x^2-1}=\dfrac{4}{x^2-1}\Leftrightarrow3-x=4\Leftrightarrow x=-1\) vậy \(x=-1\)

câu này biến đổi xong nó ra luôn pt bật 1 nên o tính \(\Delta\) đc .

b) điều kiện xác định : \(-\sqrt{5}\le x\le\sqrt{5}\)

ta có : \(\sqrt{5-x^2}=x^2+1\Leftrightarrow5-x^2=x^4+2x^2+1\)

\(\Leftrightarrow x^4+3x^2-4=0\)

đặc \(x^2=t\left(t\ge0\right)\) \(\Rightarrow pt\Leftrightarrow t^2+3t-4=0\)

ta có : \(\Delta=3^2-4\left(-4\right)=9+16=25>0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(t_1=\dfrac{-3+\sqrt{25}}{2}=1\) ; \(t_2=\dfrac{-3-\sqrt{25}}{2}=-4\left(loại\right)\)

với \(t=1\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\left(tmđk\right)\)

vậy \(x=\pm1\)

c) ta có : \(x^3-1=x^2-1\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)\left(x+1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2=0\end{matrix}\right.\) mấy cái này cũng o tính đen ta đc .

26 tháng 8 2018

a) ta có : \(\dfrac{x}{x-1}+\dfrac{6}{x+1}-4=0\Leftrightarrow\dfrac{x\left(x+1\right)+6\left(x-1\right)-4\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow x^2+x+6x-6-4x^2+4=0\Leftrightarrow-3x^2+7x-2=0\)

ta có : \(\Delta=7^2-4\left(-3\right).\left(-2\right)=25>0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-7+\sqrt{25}}{-6}=\dfrac{1}{3}\) ; \(x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-7-\sqrt{25}}{-6}=2\)

vậy \(x=\dfrac{1}{3};x=2\)

câu b bn làm tương tự nha ; chỉ cần quy đồng rồi lấy tử bằng không là đc .