Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C 3 5 4 D E F 1 2 3 4 1 2 1 2 1 2
a) Ta có : \(BC^2\)= \(5^2\)= 25 cm
\(AB^2\)+ \(AC^2\)= \(3^2\)+\(4^2\)= 25 cm
Áp dụng định lí Py-ta-go đảo ta có :
\(BC^2\)= \(AB^2\)+\(AC^2\)( 25 = 25)
Vậy \(\Delta\)ABC là \(\Delta\)vuông và vuông tại A
b) Xét \(\Delta\)BAD và \(\Delta\)BED có
\(\widehat{B_1}\)= \(\widehat{B_2}\)( do BD là tia phân giác \(\widehat{B}\))
AB = BE ( GT )
BD cạnh chung
Vậy \(\Delta\)BAD = \(\Delta\)BED ( c-g-c )
Hình tự vẽ
phần a cậu có thể tự làm :))
b+c)Xét \(\Delta\)ABD và\(\Delta\) EBD có:
AB=AE(gt)
BD(chung)
góc B1 = góc B2
=> \(\Delta\)ABD=\(\Delta\)EBD
=> AD=DE
=>\(\Delta\)ADE cân tại D(2)
Mà BD là tia pg(1)
Từ (1) và (2) => BD là đường cao của tam giác ABC
=> BD\(\perp\) AE
~Hok tốt~
\(\Delta\)
À ừ :vv tớ giải all lại nek
a) \(\Delta\)ABC là tam giác vuông
b+c) Xét \(\Delta\)ABD và \(\Delta\) EBD có:
AB=BE(gt)
BD(chung)
Góc B1=góc B2
=>\(\Delta\)ABD=\(\Delta\)EBD
=>AD= ED
=>\(\Delta\)ADE cân tại D(1)
Mà BD là tí pg của góc B(2)
Từ (1) và (2) => BD là đường cao của \(\Delta\)ABC
=>BD\(\perp\)AE
d) Ta có: BD\(\perp\) FC
AE\(\perp\)BC
Mà D là trực tâm
=> AE // FC
~Hok tốt :^~
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
B A C H D E K M
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân
a) . Xét\(\Delta ABE\) và \(\Delta ADE\) có:
BA = DA (gt)
Góc BAE = góc DAE ( gt)
AE cạnh chung
nên \(\Delta ADE\) = \(\Delta ABE\)( c-g-c)
b) Ta có :\(\widehat{ABI}+\widehat{AIB}+\widehat{BAI}\)= \(^{180^o}\)
Suy ra : \(\widehat{AIB}\) = \(180^o\)- \(\widehat{ABI}-\widehat{BAI}\)
\(\widehat{AID}+\widehat{DAI}+\widehat{IDA}\)=\(^{180^o}\)
Suy ra: \(\widehat{AID}\) = \(180^O\) - \(\widehat{ADI}\)-\(\widehat{IAD}\)
Mà \(\widehat{BAI}=\widehat{IAD}\left(gt\right)\)
\(\widehat{ABI}=\widehat{ADI}\)(\(\Delta ABD\)cân tại A)
\(\Rightarrow\)\(\widehat{AID}=\widehat{AIB}\)
Ta có: \(\widehat{AID}+\widehat{AIB}=180^o\)( 2 GÓC KỀ BÙ )
MÀ \(\widehat{AID}=\widehat{AIB}\)( CHỨNG MINH TRÊN )
NÊN \(\widehat{AIB}=\widehat{AIB}=\frac{180^O}{2}=90^O\)
HAY \(AE\perp BD\)
a) xét am giác BDA và tam giác BDE, có:
BE = BA (gt)
góc EBD = góc DBA (BD là tia phân giác của góc B)
BD : cạnh chung
\(\Rightarrow\)tam giác BDA = tam giác BDE (c.g.c)
\(\Rightarrow\)góc E = góc A = 90o(2 goc tương ứng)
\(\Rightarrow\)DE\(\perp\) BE
b)xét tam giác ADF và tam giác EDC,có:
góc DAF = góc CED (= 90o)
DE = DA (2 cạnh tương ứng)
góc CDE = góc FDA ( đối đỉnh)
\(\Rightarrow\)ta giác ADF = tam giác EDC (g.c.g)
còn BH \(//\) EK mk ko bt lm
mk chỉ kẻ đc vậy thôi bn tự kẻ tiếp nhé! A B C D E F
B A C D E F
a)Xét \(\Delta ABD\) và \(\Delta EDB\)có:
\(\widehat{BAD}=\widehat{BED}\left(=90\right);\widehat{ABD}=\widehat{EBD}\)và BD chung
\(\Rightarrow\Delta ABD=\Delta EDB\)(cạnh huyền - góc nhọn)
b) Từ câu a => AD = EB(2 cạnh tương ứng)
\(\Rightarrow\Delta ADF=\Delta FDC\left(g-c-g\right)\)(Bạn tự CM nha)
=> DF = DC (2 cạnh tương ứng)
=> \(\Delta FDC\)cân tại D
Câu b mình có cách khác nhưng chả biết bạn học tới chưa. Thôi cứ tham khảo nhé chứ cách bạn kia ngắn gọn lắm rồi
Cách mình chứng minh góc DFC = góc FCD
Xét tam giác ABC có 2 đường cao FE;AC cắt nhau tại D
=> D là trực tâm tam giác ABC
=> BD là đường cao thứ 3
=> BD vuông góc FC tại D
Xét tam giác BFC có BD vừa là phân giác vừa là đường cao
=> tam giác BFC cân tại B
=> góc BFC = góc BCF
Vì tam giác ABD = tam giác EDB => AD = DE (hai cạnh tương ứng)
Xét tam giác ADF và tam giác DEC có:
góc ADF = góc EDC (đối đỉnh)
góc DAF = góc DEC = 90 độ (gt)
AD = DE (cmt)
=> tam giác ADF = tam giác EDC (g.c.g)
=> góc AFD = góc DCE (hai góc t.ứng)
Mà: góc BFC = góc BCF
=> góc DFC = góc DCF
=> tam giác FDC cân tại F
Xong!! =)))