Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Do \(AH\perp BC\Rightarrow\)AH là đường cao của \(\Delta ABC\) cân tại A .Hay AH cũng là đường trung tuyến của \(\Delta ABC\) cân tại A .
\(\Rightarrow BH=HC\)
Xét \(\Delta BMH\) và \(\Delta CNH\) có : \(\widehat{BMH}=\widehat{CNH}=90^0\left(gt\right);BH=HC\left(cmt\right);\widehat{B}=\widehat{C}\left(gt\right)\)
\(\Rightarrow\) \(\Delta BMH\) = \(\Delta CNH\) (CH - GN) => BM = CN
Kết hợp với AB = AC => AM = AN hay \(\Delta AMN\) Cân tại A
b) \(\Delta AMN\) Cân tại A (cmt) \(\Rightarrow\widehat{BAC}=\frac{180^0-\widehat{AMN}}{2}\)(1)
\(\Delta ABC\) Cân tại A (gt) \(\Rightarrow\widehat{BAC}=\frac{180^0-\widehat{ABC}}{2}\)(2)
Từ (1);(2) \(\Rightarrow\widehat{AMN}=\widehat{ABC}\) Lại ở vị trí trong cùng phía \(\Rightarrow MN\\ \)BC
c) Áp dụng định lý Pytagore và 2 tam giác vuông\(BMH\) Và \(ANH\) ta có :
\(AH^2=AN^2+HN^2\)
\(BH^2=BM^2+MH^2\Rightarrow BM^2=BH^2-MH^2\)
\(\Rightarrow AH^2+BM^2=AN^2+HN^2+BH^2-MH^2=\left(AN^2+BH^2\right)+\left(HN^2-MH^2\right)\)
\(=AN^2+BH^2\)(đpcm)
Tam giác(TG) ABC cân tại A có đường cao AH => AH đồng thời là trung tuyến => BH=HC
TG ABC cân => Góc ABC = góc ACB (2goc đáy)
TG MBH = TG NCH (cạnh huyền-góc nhọn) => MB = NC (2ctu)
mà AB = AC (vì TG ABC cân) và AM + BM = AB , AN + NC = AC
=> AM = AN
=> TG AMN cân
b) AM = BM (CMT) và AN = NC (CMT) => MN là ddg TB của TG=> MN//BC
Cho \(\Delta ABC\) cân tại A, \(AH\perp BC\) tại H. Chứng minh \(AB^2+AC^2+BC^2=CH^2+2.AH^2+5.BH^2\)
Ta cần chứng minh:
\(AB^2+AC^2+BC^2=CH^2+2AH^2+5BH^2\)
\(\Leftrightarrow2AB^2+BC^2=6BH^2+2AH^2\)
Mà ta có:
\(2AB^2+BC^2=2\left(AH^2+BH^2\right)+4BH^2\)
\(=6BH^2+2AH^2\)
Vậy ta có ĐPCM
Bạn tự vẽ hình nhé! Phần mềm trên này khó căn chuẩn
Vì \(AH\perp BC\Rightarrow\widehat{AHB}=\widehat{AHC}=90^0\)
Xét \(\Delta ABH\) có \(\widehat{AHB}=90^0\Rightarrow AH^2+BH^2=AB^2\) ( ĐL Pytago )
Thay số : \(\Rightarrow AH^2+3^2=5^2\Leftrightarrow AH^2=5^2-3^2=25-9=16\Leftrightarrow AH=4\left(cm\right)\)
Có \(BH+HC=BC\Rightarrow HC=BC-BH=8-3=5\left(cm\right)\)
Vì \(\Delta AHC\) có \(\widehat{AHC}=90^0\Rightarrow AH^2+HC^2=AC^2\) ( ĐL Pytago )
\(\Rightarrow AC^2=4^2+5^2=16+25=41\Leftrightarrow AC=\sqrt{41}\left(cm\right)\)
A B C H
Xét \(\Delta ABH\)vuông tại H \(\Rightarrow AH^2+BH^2=AB^2\)
\(\Rightarrow AH^2=AB^2-BH^2=5^2-3^2=25-9=16\)
\(\Rightarrow AH=4\left(cm\right)\)
Ta có: \(BH+CH=BC\)\(\Rightarrow HC=BC-BH=8-3=5\)( cm )
Xét \(\Delta AHC\)vuông tại H \(\Rightarrow AH^2+HC^2=AC^2\)
\(\Rightarrow AC^2=AH^2+HC^2=4^2+5^2=16+25=40\)
\(\Rightarrow AC=\sqrt{40}=2\sqrt{10}\)( cm )
A B C H
Vì \(\Delta ABC\) cân ở A nên ta có : AB=AC=5 (cm)
Vì \(\Delta AHC\) vuông tại H nên áp dụng định lí Pi-ta go ta có:
AC2=HC2+HA2 \(\Rightarrow\)HC2=AC2-HA2=52-42=25-16=9 => HC=3 (cm)
Tương tự ta có \(\Delta AHB\) vuông ở H nên áp dụng định lí Pi-ta go ta có:
AB2=AH2+HB2 => HB2=AB2-AH2=52-42=25-16=9 => HB=3 (cm)
Ta có : BC=BH+HC=3+3=6 (cm)
Vậy BC=6 (cm) ; AC=5 (cm)
Hình ảnh bạn tự vẽ nhé!
a/ Tam giác ADI vuông tại I và tam giác ADI vuông tại I có:
ID = IH ( vì I là trung điểm của HD)
IA là cạnh chung
=> \(\Delta ADI=\Delta AHI\)( hai cạnh góc vuông)
b/ Tam giác ADB và tam giác AHB có:
AD = AH ( tam giác ADI = tam giác AHI)
\(\widehat{DAI}\) = \(\widehat{HAI}\)( vì tam giác ADI = tam giác AHI)
BA là cạnh chung.
=> Tam giác ADB = tam giác AHB ( c.g.c)
=> D = H = 90 độ
=> AD\(\perp\)BD tại D
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
Ta có ΔABC cân tại B ⇒AB=BC=BH+CH=4+1=5(cm)
Áp dụng định lý Pi-ta-go vào tam giác vuông ABH ta có:
\(AH^2+BH^2=AB^2\\ \Rightarrow AH^2=AB^2-BH^2\\ \Rightarrow AH=\sqrt{5^2-4^2}\\ \Rightarrow AH=3\left(cm\right)\)
Áp dụng định lý Pi-ta-go vào tam giác vuông AHC ta có:
\(AH^2+HC^2=AC^2\\ \Rightarrow3^2+1^2=AC^2\\ \Rightarrow AC=\sqrt{10}\left(cm\right)\)
Ta có ΔABC cân tại B ⇒AB=BC=BH+CH=4+1=5(cm)
Áp dụng định lý Pi-ta-go vào tam giác vuông ABH ta có:
\(AH^2+BH^2=AB^2\\ \Rightarrow AH^2=AB^2-BH^2\\ \Rightarrow AH=\sqrt{5^2-4^2}\\ \Rightarrow AH=3\left(cm\right)\)