Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi nếu biết cũng chẳng làm đc gì vì mỗi thầy cô ở mỗi trường khác nhau họ ko bao h có 1 bài nào kiểm tra hết.
Mình không có sách đó, bạn chịu khó chép ra vậy.......... có đề bài, mk sẽ giúp nhé
Bạn vô link liên kết này nhé tin.tuyensinh247.com sau đó tìm từ khóaĐề khảo sát đầu năm lớp 7 môn Toán TP Ninh Bình 2018 - 2019 có đáp án là được. Hoặc bạn nhấn vào Đáp án - Đề thi rồi tìm chắc chắn sẽ có.
Văn cũng tương tự nha!
Văn:
k mk nha!
Nguồn : Yahoo :)
Số chính phương chẵn là bình phương của số chẵn nên có dạng 4k. Số chính phương lẻ có dạng 4k + 1do (2n + 1)² = 4n(n + 1) + 1 (* )
Từ (*) => số chính phương lẻ có dạng 8k + 1 do 1 trong 2 số n vả (n + 1) chẵn.
Bình phương của số chia hết cho 3 thì chia hết cho 3. Bình phương của số không chia hết cho 3 thì chia cho 3 dư 1: (3n + 1)² = 3(3n² +- 2n) + 1
--------
Ta tìm số hữu tỷ x = n / m với (n, m) = 1, tức dưới dạng phân số tối giản
=> x² - 5 = (n² - 5m²) / m² = (k / l)², với (k, l) = 1
=> (n² - 5m²) * l² = m² * k²
Nếu n² - 5m² = 1 thì dĩ nhiên là số chính phương. Nếu n² - 5m² > 1 => mỗi ước nguyên tố p của n² - 5m² trong khai triển n² - 5m² thành tích các thừa số nguyên tố phải được nâng lên lũy thừa chẵn vì ngược lại thì VT chứa p với lũy thừa lẻ trong khi VP nếu có ước nguyên tố p thì nó được nâng lên lũy thừa chẵn nên không thể có đẳng thức. Vậy n² - 5m² là số chính phương. Tương tự n² + 5m² là số chính phương.
n và m không thể cùng chẵn vì phân số là tối giản. Cũng không thể cùng lẻ vì lúc đó n² + 5m² = 4m² + n² + m² là số có dạng 4k + 2 nên không thể là số chính phương. Vậy n và m không cùng chẵn lẻ. n không chẵn vì lúc đó m lẻ và n² - 5m² = n² - 8m² + 3m² có dạng 4k + 3. Vậy n lẻ và m chẵn. Nếu m không chia hết cho 4 tức có dạng 4k + 2 thì 5m² có dạng 8k + 4 và n² có dạng 8k + 1 nên số lẻ n² + 5m² có dạng 8k + 5 nên không thể là số chính phương. Vậy m chia hết cho 4
n và m tất nhiên không cùng chia hết cho 3 vì phân số tối giản. Nếu n chia hết cho 3 thì m không chia hết cho 3 và số n² + 5m² = n² + 3m² + 2m² chia cho 3 dư 2 nên không thể là số chính phương. Vậy m chia hết cho 3 và n không chia hết cho 3. Do (3, 4) = 1 => m chia hết cho 12 = 3*4 => m = 12*p, với p tự nhiên ≥ 1
Với p = 1 => m = 12 => n² - 5*12² = n² - 720 ≥ 0 => n ≥ 27
=> n = 29, 31, 35, 37, 41, ... (các số lẻ ≥ 27 không chia hết cho 3)
Ta loại n = 35 vì lúc đó n² - 5m² chia hết cho 5 nhưng không chia hết cho 25 do m không chia hết cho 5 nên không thể là số chính phương. Thử 4 số còn lại ta thấy n = 41 thỏa mãn:
41² - 5*12² = 31², 41² + 5*12² = 49²
(41 / 12)² - 5 = (31 / 12)², (41 / 12)² + 5 = (49 / 12)² tức x = 41 / 12 thỏa mãn
Câu 1: (2 điểm) Cho biểu thức:
a, Rút gọn biểu thức
b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.
Câu 2: (1 điểm)
Tìm tất cả các số tự nhiên có 3 chữ số sao cho
Câu 3: (2 điểm)
a. Tìm n để n2 + 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.
Câu 4: (2 điểm)
a. Cho a, b, n thuộc N*. Hãy so sánh
b. Cho . So sánh A và B.
Câu 5: (2 điểm)
Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
Câu 6: (1 điểm)
Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.
Câu 1: (2 điểm) Cho biểu thức:
a, Rút gọn biểu thức
b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.
Câu 2: (1 điểm)
Tìm tất cả các số tự nhiên có 3 chữ số sao cho
Câu 3: (2 điểm)
a. Tìm n để n2 + 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.
Câu 4: (2 điểm)
a. Cho a, b, n thuộc N*. Hãy so sánh
b. Cho . So sánh A và B.
Câu 5: (2 điểm)
Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
Câu 6: (1 điểm)
Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.
T.I.C.K nha
Bài 1:
Vì góc ECD = QPC ( nằm ở vị trí đồng vị )
=> AE // MQ ( đpcm )
Vì CBN và BNM là 2 góc so le trong
=> CBN // BNM ( đpcm )
Bài 2:
a, Vì MAC và NCA là 2 góc trong cùng phía bù nhau
=> MAC + NCA = 110* + 70* = 180*
=> AB // CD
b, Vì AB // CD ( câu a )
và BD _|_ DC
=> BD _|_ AB
Bài 1:
a) Ta có:
\(\widehat{C} = \widehat{P} = 50^O\) (hình vẽ)
mà 2 góc này nằm ở vị trí đồng vị
\(\Rightarrow\) AD // MQ (dhnb)
b) Vì AD // MQ (cmt)
\(\Rightarrow\)\(\widehat{CBN} = \widehat{BNM}\) ( so le trong)
Bài 1 (dưới)
a) Ta có:
\(\widehat{MAC} + \widehat{ACN} = 70^O + 110^O = 180^O\)
mà 2 góc này nằm ở vị trí trong cùng phía
\(\Rightarrow\) AB // CD
b) Ta có:
AB // CD (cmt)
\(BD \perp DN\) (hình vẽ)
\(\Rightarrow\)\(BD \perp AB\) (Định lí 3 trong bài từ vuông góc đến song song)
Gọi số người đội I là a ; đội II là b ; đội III là c (\(a;b;c\inℕ^∗\) )
Vì số người và số ngày làm tỉ lệ nghịch với nhau
=> 4a = 6b = 8c
=> 2a = 3b = 4c
=> \(\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\)
=> \(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)
Lại có a - b = 4
Áp dụng tính chất dãy tỉ số bằng nhau
=> \(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{a-b}{6-4}=\frac{4}{2}=2\)
=> a = 12 ; b = 8 ; c = 6 (tm)
Vậy số người đội I là 12 người ; đội II là 8 người ; đội III là 6 người
mù quá tui ko thấy gì hết.