K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2018

Chưa chắc gì mà đề trường nào cũng giống đâu nha <3

25 tháng 10 2018

- tùy từng đề

- chỉ xem chất lượng khi làm bài

Bài 3 

Trả lời:

a) Xét ΔAKC,ΔAHBΔAKC,ΔAHB có :

AKCˆ=AHBˆ(=90O)AKC^=AHB^(=90O)

AB=AC(ΔABC cân tại A)AB=AC(ΔABC cân tại A)

Aˆ:chungA^:chung

=> ΔAKC=ΔAHBΔAKC=ΔAHB (cạnh huyền - góc nhọn)

=> AH = AK (2 cạnh tương ứng)

                                            ~Học tốt!~

13 tháng 4 2020

Bài 1 : a) Xét ΔAKC,ΔAHBΔAKC,ΔAHB có :

AKCˆ=AHBˆ(=90O)AKC^=AHB^(=90O)

AB=AC(ΔABC cân tại A)AB=AC(ΔABC cân tại A)

Aˆ:chungA^:chung

=> ΔAKC=ΔAHBΔAKC=ΔAHB (cạnh huyền - góc nhọn)

=> AH = AK (2 cạnh tương ứng)

Bài 2 

a, Xét tam giác OBN và tam giác MAO ta có:

OB=OA( giả thiết)

góc OBN= góc OAM=90 độ

có chung góc O

⇒⇒tam giác OBN = tam giác OAM( cạnh góc vuông/ góc nhọn kề cạnh)

suy ra: ON=OM(hai cạnh tương ứng)

+ vì OA=OB và ON=OM

suy ra : OM-OB=ON-OA

suy ra : BM=AN

b, theo câu a ta có :

tam giác OBN= tam giác OAM

suy ra : góc ANH = góc BMH( hai góc tương ứng )

xét tam giác HMB và tam giác HAN ta có

BN=AN

góc HAN = góc HBM = 900

góc ANH = góc HBM

suy ra: tam giác BMH = tam giác ANH(cạnh góc vuông/ góc nhọn kề cạnh)

suy ra : HB=HA(hai cạnh tương ứng)

xét tam giác OHA và tam giác OHB ta có

OA=OB(giả thiết)

HB=HA

OH là cạnh chung

suy ra: tam giác OHA = tam giác OHB(c.g.c)

suy ra: góc BOH= góc AOH( hai góc tương ứng)

vậy OH là tia phân giác của góc xOy

c, xét tam giác MOI và tam giác NOI ta có :

OM=On ( giả thiết)

góc BOH= góc HOA

Oi là cạnh chung

suy ra tam giác MOI= tam giác NOI(c.g.c)

suy ra góc MIO = góc NIO (hai góc tương ứng)

mà góc MIO + góc NIO = 1800 ( hai góc kề bù)

nên OI vuông góc với MN

áp dụng định lý của hai đường thẳng vuông góc ta có ba điểm O,H,I thẳng hàng

Bài 3 mình không biết làm :)))

Chúc bạn học tốt ~!

a: Xét ΔOBA vuông tại B và ΔOCA vuông tại C có

OA chung

góc BOA=góc COA

=>ΔOBA=ΔOCA

b: ΔOBA=ΔOCA

=>AB=AC

=>ΔABC cân tại A

c: OB=OC

AB=AC
=>OA là trung trực của BC

=>OA vuông góc BC

d: AB=căn 10^2-8^2=6cm

7 tháng 2 2020

Hình vẽ : ( Mang tính chất minh họa không chính xác lắm )

x O y A B C H

Gọi \(AC\) giao \(Ox\) tại H

Xét \(\Delta ABH:\widehat{BAH}+\widehat{ABH}+\widehat{AHB}=180^o\) ( định lý tổng 3 góc trong 1 tam giác )

Xét \(\Delta COH:\widehat{HOC}+\widehat{CHO}+\widehat{HCO}=180^o\)  ( định lý tổng 3 góc trong 1 tam giác )

Mà ta thấy : \(\hept{\begin{cases}\widehat{AHB}=\widehat{CHO}\left(đ^2\right)\\\widehat{ABH}=\widehat{HCO}\left(=90^o\right)\end{cases}}\)

Nên : \(\widehat{HOC}=\widehat{HAB}\) hay \(\widehat{xOy}=\widehat{BAC}\) (đpcm)

14 tháng 3 2020
Ngu lll
20 tháng 2 2019

xét tam giác AOB và tam giác AOC có:

              AO chung

              \(\widehat{AOB}\)=\(\widehat{AOC}\)(gt)

\(\Rightarrow\)tam giác AOB=tam giác AOC(CH-GN)

\(\Rightarrow\)AB=AC đpcm

Bài 25: Cho tg ABC có B=C.Tia phân giác của góc A cắt BC tại D. Chứng minh rằng:a) tg ADB = tg ADCb) AB = ACBài 26: Cho góc xOy khác góc bẹt. Ot là phân giác của góc đó. Qua điểm H thuộc tia Ot,kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự là A và B.a) Chứng minh rằng OA = OB;b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và OAC=OBCBài 27. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy...
Đọc tiếp

Bài 25: Cho tg ABC có B=C.Tia phân giác của góc A cắt BC tại D. Chứng minh rằng:
a) tg ADB = tg ADC
b) AB = AC
Bài 26: Cho góc xOy khác góc bẹt. Ot là phân giác của góc đó. Qua điểm H thuộc tia Ot,
kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự là A và B.
a) Chứng minh rằng OA = OB;
b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và OAC=OBC
Bài 27. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D
sao cho OA = OB, AC = BD.
a) Chứng minh: AD = BC.
b) Gọi E là giao điểm AD và BC. Chứng minh: tg EAC = tg EBD
c) Chứng minh: OE là phân giác của góc xOy, OE vuông góc CD
Bài 28 : Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy
điểm N, trên tia CB lấy điểm M sao cho CN=BM.
a) Chứng minh tg ABI= tg ACI và AI là tia pg của góc BAC
b)Chứng minh AM=AN.
c) Chứng minh AI vuông góc BC.

1
26 tháng 2 2020

1)A) vì \(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta ABC\)CÂN TẠI A

\(\Rightarrow AB=AC\)

XÉT \(\Delta ADB\)\(\Delta ADC\)

\(AB=AC\left(CMT\right)\)

\(\widehat{ADB}=\widehat{ADC}\left(GT\right)\)

\(AD\)LÀ CẠNH CHUNG

\(\Rightarrow\Delta ADB=\Delta ADC\left(C-G-C\right)\)

B)VÌ\(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta ABC\)CÂN TẠI A

=> AB=AC

a: Xét ΔOAI và ΔOBI có

OA=OB

\(\widehat{AOI}=\widehat{BOI}\)

OI chung

Do đó: ΔOAI=ΔOBI

b: Ta có: ΔOAI=ΔOBI

=>IA=IB

=>I nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OI là đường trung trực của BA

=>OI\(\perp\)AB

=>Oz\(\perp\)AB

c: ta có: Oz\(\perp\)AB

AB//CD

Do đó: Oz\(\perp\)CD tại I

Xét ΔOCD có

OI là đường cao

OI là đường phân giác

Do đó;ΔOCD cân tại O

Ta có: ΔOCD cân tại O

mà OI là đường cao

nên I là trung điểm của CD

d: Ta có: OB+BD=OD

OA+AC=OC

mà OB=OA

và OC=OD

nên BD=AC

Xét ΔBDC và ΔACD có

BD=AC

\(\widehat{BDC}=\widehat{ACD}\)(ΔOCD cân tại O)

CD chung

Do đó: ΔBDC=ΔACD

=>\(\widehat{BCD}=\widehat{ADC}\)

=>\(\widehat{MCD}=\widehat{MDC}\)

Xét ΔMCD có \(\widehat{MCD}=\widehat{MDC}\)

nên ΔMCD cân tại M

=>MC=MD

=>M nằm trên đường trung trực của CD(3)

Ta có: ΔOCD cân tại O

mà OI là đường cao

nên OI là đường trung trực của CD(4)

Từ (3) và (4) suy ra O,M,I thẳng hàng