Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(p^2-2q^2=1\Rightarrow p^2=2q^2\)mà p lẻ. Đặt p = 2k + 1 (k là số tự nhiên)
Ta có:
\(\left(2k+1\right)^2=2q^2+1\Rightarrow q^2+1=2k\left(k+1\right)\Rightarrow q=2\)(vì q là số nguyên tố) tìm được p = 3
Vậy: \(\left(p;q\right)\in\left\{3;2\right\}\)
a) \(p^2q+p⋮\left(p^2+q\right)\Rightarrow q\left(p^2+q\right)-\left(p^2q+q\right)=q^2-p\left(p^2+q\right)\)
\(pq^2+q⋮\left(q^2-p\right)\Rightarrow\left(pq^2+q\right)-p\left(q^2-p\right)=p^2+q⋮q^2-p\)
\(q^2-p=-\left(p^2+q\right)\Leftrightarrow q^2+q+p^2-p=0\left(VN\right)\)
\(q^2-p=p^2+q\Leftrightarrow\left(q+p\right)\left(q-p-1\right)=0\Leftrightarrow q-p-1=0\Leftrightarrow q=p+1\)
Mà p,q là 2 số nguyên tố nên p=2, q=3
Ta có \(\frac{x-y\sqrt{2019}}{y-z\sqrt{2019}}=\frac{m}{n}\left(m,n\varepsilonℤ,\left(m,n\right)=1\right).\)
\(\Rightarrow nx-ny\sqrt{2019}=my-mz\sqrt{2019}\Leftrightarrow nx-my=\sqrt{2019}\left(ny-mz\right).\)\(\Rightarrow\hept{\begin{cases}nx-my=0\\ny-mz=0\end{cases}\Rightarrow}\frac{x}{y}=\frac{y}{z}=\frac{m}{n}\Rightarrow xz=y^2.\)
Khi đó \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-2y^2+y^2=\left(x+z\right)^2-y^2\)
\(=\left(x-y+z\right)\left(x+y+z\right)\)
Vì \(x+y+z\)là số nguyên lớn hơn 1 và \(x^2+y^2+z^2\)là số nguyên tố nên
\(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}\Leftrightarrow}x=y=z=1\)(chỗ này bn tự giải chi tiết nhé, và thử lại nữa)
Kết luận...
\(\frac{x-y\sqrt{2017}}{y-z\sqrt{2017}}\)
đề thế này còn tạm chấp nhận :v
Từ \(x+y+z=2017\Rightarrow\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z=\frac{x+y}{xy}+\frac{x+y}{z+''x+y+z''}=0\Rightarrow''x+y''''\frac{1}{xy}+\frac{1}{xz+yz+z^2}=0\)
\(\Rightarrow\frac{''x+y''''y+z''''z+x''}{xyz''x+y+z''}=0\Rightarrow''x+y''''y+z''''z+x''=0\) Do x,y,z khác 0
Mà \(x+y+z=2017\)
\(\Rightarrow x+y=0\Rightarrow x=2017\)
hoặc \(y+z=0\Rightarrow x=2017\)
hoặc \(x+z=0\Rightarrow x=2017\)
\(p^2+2q^2=41\Rightarrow41-2q^2=p^2\Rightarrow p^2\) là số lẻ
=> p=2k+1 (k thuộc N*), thay vào=> q2=2k(k+1)-20
=> q chẵn mà q là số nguyên tối nên q=2
=> p2=49 => p=7