Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vận dụng tính chất giao hoán ta có: \[\overrightarrow u = \overrightarrow {NP} + \overrightarrow {MN} = \overrightarrow {MN} + \overrightarrow {NP} = \overrightarrow {MP} \]
Chọn C.
a: Xét ΔMQN và ΔMQP có
MQ chung
\(\widehat{NMQ}=\widehat{PMQ}\)
NM=PM
Do đó: ΔMNQ=ΔMPQ
b: Ta có: ΔMNP cân tại M
mà MQ là phân giác
nên MQ là đường cao
c: NP=6cm nên NQ=3cm
=>MQ=4cm
Do MQ và PN không song song với nhau nên \(\overrightarrow {MQ} \ne k\overrightarrow {NP} \). Vậy loại B và D.
Ta có: \(\overrightarrow {MN} ,\overrightarrow {PQ} \)là hai vecto ngược hướng và \(\left| {\overrightarrow {MN} } \right| = 2\left| {\overrightarrow {PQ} } \right|\)
Suy ra \(\overrightarrow {MN} = - 2\overrightarrow {PQ} \)
Vậy chọn C.
bài này là bài cơ bản, bạn nắm lí thuyết SGK là có thể làm được ( hình bạn tự vẽ nha)
Tam giác MNP có MN = MP suy ra tam giác MNP cân tại M
Xét tam giác MNI và MPI có MN = MP (gt) ; MI là cạnh chung và góc NMI = góc PMI
suy ra tam giác MNI = tam giác MPI (c-g-c)
b) Xét 2 tam giác vuông HNI và KPI có
IN = IP ( tam giác MNP cân suy ra phân giác đồng thời là trung tuyến )
góc HNI = góc KPI ( tam giác MNP cân tại M )
suy ra tam giác HNI = tam giác KPI ( cạnh huyền - góc nhọn )
Vẽ N E → = M N → .
Khi đó M N → , N P → = N E → , N P →
= P N E ^ = 180 0 − M N P ^ = 180 0 − 60 0 = 120 0 .
Vẽ O F → = M O → . Khi đó M O → , O N → = O F → , O N → = N O F ^ = 60 0 .
Vì M N ⊥ O P ⇒ M N → , O P → = 90 0 .
Ta có M N → , M P → = N M P ^ = 60 0 .
Chọn A
Vẽ −−→MQ=−−→NPMQ→=NP→
(MN→,NP→)=(MN→,MQ→)=120 độ.
Chọn (A).
Ngoài ra, có thể tính được:
(−−→MO,−−→ON)=60 độ \
(−−−→MN,−−→OP)=90 độ
(−−−→MN,−−→MP)=60 độ
ho O là tâm đường tròn ngoại tiếp tam giác đều MNP. Góc nào sau đây bằng 12001200 ? (
A) (−−−→MN,−−→NP)(MN→,NP→);
(B) (−−→MO,−−→ON)(MO→,ON→);
(C) (−−−→MN,−−→OP)(MN→,OP→);
(D) (−−−→MN,−−→MP)(MN→,MP→).
#Tiểu Cừu