Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Xét \(\Delta AHI,\Delta AKI\) có:
\(\widehat{AHI}=\widehat{AKI}=90^o\)
AI: cạnh chung
\(\widehat{A_1}=\widehat{A_2}\left(=\frac{1}{2}\widehat{A}\right)\)
\(\Rightarrow\Delta AHI=\Delta AKI\) ( c.huyền - g.nhọn )
\(\Rightarrow HI=KI\) ( cạnh t/ứng ) (1)
Xét \(\Delta BHI,\Delta CKI\) có:
IB = IC ( gt )
\(\widehat{BHI}=\widehat{CKI}=90^o\)
IH = IK ( theo (1) )
\(\Rightarrow\Delta BHI=\Delta CKI\) ( c.huyền - c.g.vuông)
\(\Rightarrow BH=CK\) ( cạnh t/ứng ) ( đpcm )
Vậy...
AM vuông góc với DE chứ.
\(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right);\overrightarrow{DE}=\left(\overrightarrow{AE}-\overrightarrow{AD}\right)\)
\(\Rightarrow\overrightarrow{AM}.\overrightarrow{DE}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\left(\overrightarrow{AE}-\overrightarrow{AD}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{AB}.\overrightarrow{AE}-\overrightarrow{AC}.\overrightarrow{AD}-\overrightarrow{AB}.\overrightarrow{AD}+\overrightarrow{AC}.\overrightarrow{AE}\right)\)
\(=\dfrac{1}{2}\left[AB.AE.cos\left(\widehat{BAC}+90^o\right)-AC.AD.cos\left(\widehat{BAC}+90^o\right)-AB.AD.cos90^o+AC.AE.cos90^o\right]\)
\(=0\)
\(\Rightarrow AM\perp DE\)
∞ Xét ▲ABK và ▲ACH có :
Góc A chung
Góc E = Góc D = 1v
AB = AC ( ▲ABC cân tại A )
Nên ▲ABK = ▲ACH (chgn) → AH = AK
∞ Xét ▲ADH và ▲ADK có :
AD chung
Góc H = Góc K = 1v
AH = AK (cmt)
Nên ▲ADH = ▲ADK (chcgv) → \(A_1=A_2\) kết hợp với AD nằm giữa AB và AC → AD phân giác góc A mà trong tam giác cân phân giác cũng là đường cao nên AD là đường cao hay BD _|_ AC.
CHÚC BẠN HỌC TỐT !!!
bài này là bài cơ bản, bạn nắm lí thuyết SGK là có thể làm được ( hình bạn tự vẽ nha)
Tam giác MNP có MN = MP suy ra tam giác MNP cân tại M
Xét tam giác MNI và MPI có MN = MP (gt) ; MI là cạnh chung và góc NMI = góc PMI
suy ra tam giác MNI = tam giác MPI (c-g-c)
b) Xét 2 tam giác vuông HNI và KPI có
IN = IP ( tam giác MNP cân suy ra phân giác đồng thời là trung tuyến )
góc HNI = góc KPI ( tam giác MNP cân tại M )
suy ra tam giác HNI = tam giác KPI ( cạnh huyền - góc nhọn )