Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\frac{5x-2}{3}=\frac{5x-3x}{2}\)
\(\Leftrightarrow2.\left(5x-2\right)=3.\left(5x-3x\right)
\)
\(\Leftrightarrow10x-4=15x-9x\)
\(\Leftrightarrow4x=4\)
\(\Leftrightarrow x=1\)
Vậy...
b. \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\left(1\right)\)
MC = 36.
pt (1) <=>
\(\frac{3\left(10x+3\right)}{36}=\frac{36}{36}+\frac{4\left(6+8x\right)}{36}\)
=> 3.(10x+3) = 36 + 4(6+8x)
<=> 30x+9 = 36+24+32x
<=> -2x = 51
<=> x = \(\frac{-51}{2}\)
Vậy...
c. \(\frac{7x-1}{6}+2=\frac{16-x}{5}\left(2\right)\)
MC = 30.
pt (2) <=>
\(\frac{5\left(7x-1\right)}{30}+\frac{60x}{30}=\frac{6\left(16-x\right)}{30}\)
=> 5(7x-1) + 60x = 6(16-x)
<=> 35x-5 + 60x = 96-6x
<=> 101x = 101
<=> x = 1
Vậy...
d. \(\frac{3x+2}{2}-\frac{3x+1}{6}=5\) (3)
MC = 12.
pt (3)<=>
\(\frac{6\left(3x+2\right)}{12}-\frac{2\left(3x+1\right)}{12}=\frac{60}{12}\)
=> 6(3x+2) - 2(3x+1) = 60
<=> 18x+12 - 6x-2 = 60
<=> 12x = 50
<=> x = \(\frac{25}{6}\)
Vậy...
e. \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\) (4)
MC = 30.
pt (4) <=>
\(\frac{6\left(x+4\right)}{30}-\frac{30x}{30}+\frac{120}{30}=\frac{10x}{30}-\frac{15\left(x-2\right)}{30}\)
=> 6(x+4) - 30x + 120 = 10x - 15(x-2)
<=> 6x+24 - 30x + 120 = 10x - 15x+30
<=> -19x = -114
<=> x = \(\frac{114}{19}=6\)
Vậy...
Well, it's ez, right? Hướng dẫn thôi nhé :> (*gớm, xài brain nhiều vào :V*)
a, ĐKXĐ: \(x\notin\left\{-1;3\right\}\)
\(\frac{x}{2x+2}-\frac{2x}{x^2-2x-3}=\frac{x}{6-2x}\\ \Leftrightarrow\frac{x}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=\frac{x}{-2\left(x-3\right)}\\ \Leftrightarrow\frac{x\left(x-3\right)-4x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{-x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}\Leftrightarrow...\)
Đến đây khử mẫu, giải PT và xét nghiệm với ĐKXĐ nhé (cứ thấy linh tinh với ĐKXĐ là cho outplay lun :>)
b, ĐKXĐ: \(x\notin\left\{2;3\right\}\)
\(\frac{5}{-x^2+5x-6}+\frac{x+3}{2-x}=0\\ \Leftrightarrow\frac{-5}{-\left(x-2\right)\left(x-3\right)}+\frac{x+3}{2-x}=0\\\Leftrightarrow\frac{-5}{\left(2-x\right)\left(x-3\right)}=\frac{-\left(x+3\right)\left(x-3\right)}{\left(2-x\right)\left(x-3\right)}\Leftrightarrow...\)
c, ĐKXĐ: \(x\notin\left\{-2;1\right\}\)
\(\frac{3}{x^2+x-2}-\frac{1}{x-1}=\frac{-4}{x+2}\\ \Leftrightarrow\frac{3}{\left(x-1\right)\left(x+2\right)}-\frac{1}{x-1}=\frac{-4}{x+2}\\ \Leftrightarrow\frac{3-\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}=\frac{-4\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\Leftrightarrow...\)
Thế thui, chúc bạn học tốt nha.
dù sao thì cũng cảm ơn cậu.
câu này tớ thật dự không biết thì mới hỏi mà chứ có phải là không dùng óc để suy nghĩ đâu. cậu học tốt nhé
\(a)\dfrac{{x + 1}}{{x - 2}} - \dfrac{{x - 1}}{{x + 2}} = \dfrac{{2\left( {{x^2} + 2} \right)}}{{{x^2} - 4}}\)
ĐKXĐ: \(x\ne\pm2\)
\(\Leftrightarrow \dfrac{{\left( {x + 1} \right)\left( {x + 2} \right) - \left( {x - 1} \right)\left( {x - 2} \right)}}{{{x^2} - 4}} = \dfrac{{2\left( {{x^2} + 2} \right)}}{{{x^2} - 4}}\\ \Leftrightarrow {x^2} + 3x + 2 - \left( {{x^2} - 3x + 2} \right) = 2{x^2} + 4\\ \Leftrightarrow 6x = 2{x^2} + 4\\ \Leftrightarrow - 2{x^2} + 6x - 4 = 0\\ \Leftrightarrow 2{x^2} - 6x + 4 = 0\\ \Leftrightarrow {x^2} - 3x + 2 = 0\\ \Leftrightarrow {x^2} - 2x - x + 2 = 0\\ \Leftrightarrow x\left( {x - 2} \right) - \left( {x - 2} \right) = 0\\ \Leftrightarrow \left( {x - 2} \right)\left( {x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 2 = 0\\ x - 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 2\left( {KTM} \right)\\ x = 1\left( {TM} \right) \end{array} \right. \)
Vậy \(x=1\)
\(b)\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}} \)
ĐKXĐ: \(x\ne\pm2\)
\( \Leftrightarrow \dfrac{{\left( {x - 1} \right)\left( {x - 2} \right) - x\left( {x + 2} \right)}}{{{x^2} - 4}} = \dfrac{{2 - 5x}}{{{x^2} - 4}}\\ \Leftrightarrow {x^2} - 3x + 2 - {x^2} - 2x = 2 - 5x\\ \Leftrightarrow 0x = 0\left( {VSN} \right) \)
Vậy phương trình vô số nghiệm
\(c)\dfrac{{x - 2}}{{2 + x}} - \dfrac{3}{{x - 2}} = \dfrac{{2\left( {x - 11} \right)}}{{{x^2} - 4}}\)
ĐKXĐ: \(x\ne\pm2\)
\( \Leftrightarrow \dfrac{{\left( {x - 2} \right)\left( {x - 2} \right) - 3\left( {x + 2} \right)}}{{{x^2} - 4}} = \dfrac{{2x - 22}}{{{x^2} - 4}}\\ \Leftrightarrow {x^2} - 4x + 4 - 3x - 6 = 2x - 22\\ \Leftrightarrow {x^2} - 9x + 20 = 0\\ \Leftrightarrow {x^2} - 4x - 5x + 20 = 0\\ \Leftrightarrow x\left( {x - 4} \right) - 5\left( {x - 4} \right) = 0\\ \Leftrightarrow \left( {x - 4} \right)\left( {x - 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 4 = 0\\ x - 5 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 4\left( {TM} \right)\\ x = 5\left( {TM} \right) \end{array} \right. \)
Vậy \(x=4,x=5\)
d) \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x-2}{5}-5\)
\(\Leftrightarrow\frac{5\left(5x+2\right)}{30}-\frac{10\left(8x-1\right)}{30}=\frac{6\left(4x-2\right)}{30}-\frac{150}{30}\)
\(\Leftrightarrow25x+10-80x+10=24x-12-150\)
\(\Leftrightarrow25x-80x-24x=-12-150-10-10\)
\(\Leftrightarrow-79x=-182\)
\(\Leftrightarrow x=\frac{182}{79}\).
Vậy tập nghiệm phương trình \(s=\left\{\frac{182}{79}\right\}\)
a)\(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\)
\(\Leftrightarrow\frac{3\left(3x+2\right)}{6}-\frac{3x+1}{6}=\frac{10}{6}+\frac{12x}{6}\)
\(\Leftrightarrow9x+6-3x+1=10+12x\)
\(\Leftrightarrow9x-3x-12x=10-6-1\)
\(\Leftrightarrow-6x=3\)
\(\Leftrightarrow x=\frac{-1}{2}\).
Vậy tập nghiệm phương trình \(S=\left\{\frac{-1}{2}\right\}\)
Bài 3 :
Ta có : \(A=x^2+x+2012\)
=> \(A=x^2+x+\left(\frac{1}{2}\right)^2+\frac{8047}{4}\)
=> \(A=\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\)
- Ta thấy : \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
=> \(\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\ge\frac{8047}{4}\forall x\)
- Dấu "=" xảy ra <=> \(x+\frac{1}{2}=0\)
<=> \(x=-\frac{1}{2}\)
Vậy MinA = \(\frac{8047}{4}\) <=> x = \(-\frac{1}{2}\) .
Bài 1 :
a, Ta có : \(\left(3x-2\right)\left(4+5x\right)=0\)
=> \(\left[{}\begin{matrix}3x-2=0\\4+5x=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}3x=2\\5x=-4\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=-\frac{4}{5}\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = \(\frac{2}{3}\), x = \(-\frac{4}{5}\) .
b,- ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
=> \(x\ne\pm1\)
Ta có : \(\frac{x+1}{x-1}-\frac{4}{x+1}=\frac{3-x^2}{1-x^2}\)
=> \(\frac{\left(x+1\right)^2}{x^2-1}-\frac{4\left(x-1\right)}{x^2-1}=\frac{x^2-3}{x^2-1}\)
=> \(\left(x+1\right)^2-4\left(x-1\right)=x^2-3\)
=> \(x^2+2x+1-4x+4=x^2-3\)
=> \(-2x=-3-5\)
=> \(x=4\left(TM\right)\)
Vậy phương trình có nghiệm là x = 4 .
c, Ta có : \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}-\frac{2-10x}{2014}\)
=> \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}+\frac{10x-2}{2014}\)
=> \(\frac{10x+3}{2009}+1+\frac{10x-1}{2013}+1=\frac{10x+1}{2011}+1+\frac{10x-2}{2014}+1\)
=> \(\frac{10x+3}{2009}+\frac{2009}{2009}+\frac{10x-1}{2013}+\frac{2013}{2013}=\frac{10x+1}{2011}+\frac{2011}{2011}+\frac{10x-2}{2014}+\frac{2014}{2014}\)
=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}=\frac{10x+2012}{2011}+\frac{10x+2012}{2014}\)
=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}-\frac{10x+2012}{2011}-\frac{10x+2012}{2014}=0\)
=> \(\left(10x+2012\right)\left(\frac{1}{2009}+\frac{1}{2013}-\frac{1}{2011}-\frac{1}{2014}\right)=0\)
=> \(10x+2012=0\)
=> \(x=-\frac{2012}{10}\)
Vậy phương trình có nghiệm là x = \(-\frac{2012}{10}\) .
Bài 3:
Giải:
Ta có : A = x2 + x + 2012
= x2 + 2.\(\frac{1}{2}\).x + \(\frac{1}{4}\) + \(\frac{8047}{4}\)
= (x + \(\frac{1}{2}\))2 + \(\frac{8047}{4}\) ≥ \(\frac{8047}{4}\)
⇒ Amin = \(\frac{8047}{4}\) ⇔ (x + \(\frac{1}{2}\))2 = 0 ⇔ x = \(-\frac{1}{2}\)
Vậy Amin = \(\frac{8047}{4}\) tại x = \(-\frac{1}{2}\)
Chúc bạn học tốt@@
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
a, \(\frac{x-1}{x+2}+1=\frac{1}{x-2}\)
ĐKXĐ: x + 2 \(\ne\) 0 và x - 2 \(\ne\) 0
\(\Rightarrow\) x \(\ne\) \(\pm\) 2
b, \(\frac{x-1}{1-2x}=1\)
ĐKXĐ: 1 - 2x \(\ne\) 0
\(\Leftrightarrow\) x \(\ne\) \(\frac{1}{2}\)
Bài 2:
a, \(\frac{x+2}{x}=\frac{2x+3}{x-2}\) (ĐKXĐ: x \(\ne\) 0; x \(\ne\) 2)
\(\Leftrightarrow\) \(\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}=\frac{x\left(2x+3\right)}{x\left(x-2\right)}\)
\(\Rightarrow\) (x + 2)(x - 2) = x(2x + 3)
\(\Leftrightarrow\) x2 - 4 = 2x2 + 3x
\(\Leftrightarrow\) x2 - 2x2 - 3x = 4
\(\Leftrightarrow\) -x2 - 3x = 4
\(\Leftrightarrow\) -x2 - 3x - 4 = 0
\(\Leftrightarrow\) -(x2 + 3x + 4) = 0
\(\Leftrightarrow\) x2 + 3x + 4 = 0
\(\Leftrightarrow\) x2 + 3x + \(\frac{9}{4}\) + \(\frac{7}{4}\) = 0
\(\Leftrightarrow\) (x + \(\frac{3}{2}\))2 + \(\frac{7}{4}\) = 0
Vì (x + \(\frac{3}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x
\(\Rightarrow\) Pt vô nghiệm
Vậy S = \(\varnothing\)
b, \(\frac{2x+5}{2x}-\frac{x}{x+5}=0\) (ĐKXĐ: x \(\ne\) 0; x \(\ne\) -5)
\(\Leftrightarrow\) \(\frac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\frac{2x^2}{2x\left(x+5\right)}=0\)
\(\Rightarrow\) (2x + 5)(x + 5) - 2x2 = 0
\(\Leftrightarrow\) 2x2 + 10x + 5x + 25 - 2x2 = 0
\(\Leftrightarrow\) 15x + 25 = 0
\(\Leftrightarrow\) x = \(\frac{-5}{3}\) (TMĐKXĐ)
Vậy S = {\(\frac{-5}{3}\)}
c, \(\frac{x+1}{3-x}=2\)
\(\Leftrightarrow\) \(\frac{x+1}{3-x}=\frac{2\left(3-x\right)}{3-x}\) (ĐKXĐ: x \(\ne\) 3)
\(\Rightarrow\) x + 1 = 2(3 - x)
\(\Leftrightarrow\) x + 1 - 2(3 - x) = 0
\(\Leftrightarrow\) x + 1 - 6 + 2x = 0
\(\Leftrightarrow\) 3x - 5 = 0
\(\Leftrightarrow\) x = \(\frac{5}{3}\) (TMĐKXĐ)
Vậy S = {\(\frac{5}{3}\)}
d, \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{16}{x^2-1}\) (ĐKXĐ: x \(\ne\) \(\pm\) 1)
\(\Leftrightarrow\) \(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{16}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow\) (x + 1)2 - (x - 1)2 = 16
\(\Leftrightarrow\) (x + 1 - x + 1)(x + 1 + x - 1) = 16
\(\Leftrightarrow\) 4x = 16
\(\Leftrightarrow\) x = 4 (TMĐKXĐ)
Vậy S = {4}
Chúc bn học tốt!!