Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(16x\left(2-x\right)-\left(4x-5\right)^2=0\)
\(32x-16x^2-16x^2+40x-25=0\)
\(72x-16x^2-25=0\)
Đề sai ko bạn
2) \(\left(x-7\right)^2+3=\left(x-2\right)\left(x+2\right)\)
\(\left(x^2-14x+7\right)+3-\left(x-2\right)\left(x+2\right)=0\)
\(x^2-14x+7+3-x^2+4=0\)
\(-14x+14=0\)
\(x=1\)
3) \(\left(2x-3\right)^2-\left(7x-2x\right)^2=2\)
\(\left(2x-3\right)^2-\left(5x\right)^2=2\)
\(\left(2x-3-5x\right)\left(2x-3+5x\right)=2\)
\(\left(-3x-3\right)\left(7x-3\right)=2\)
=> lập bảng tìm x
4) \(\left(5x-7\right)^2-\left(1-3x\right)^2=16x\left(x-3\right)\)
\(25x^2-70x+49-9x^2+6x-1-16x^2+48x=0\)
\(-16x+48=0\)
\(x=3\)
a) \(2x-10=0\)
\(\Leftrightarrow2x=10\)
\(\Leftrightarrow x=5\)
Vậy tập nghiệm của phương trình là: S = {5}
b) \(3,4-x=-4\)
\(\Leftrightarrow x=7,4\)
Vậy tập nghiệm của phương trình là: S = {7,4}
c) \(x-\frac{4}{5}=\frac{1}{5}\)
\(\Leftrightarrow x=1\)
Vậy tập nghiệm của phương trình là: S = {1}
d) \(2\left(x-3\right)-3x+5=0\)
\(\Leftrightarrow2x-6-3x+5=0\)
\(\Leftrightarrow-x-1=0\)
\(\Leftrightarrow x=-1\)
Vậy tập nghiệm của phương trình là: S = {-1}
a, \(2x-10=0\Leftrightarrow x=5\)
Vậy tập nghiệm của phương trình là S = {5}
b, \(3,4-x=-4\Leftrightarrow x=7,4\)kết luận tương tự như trên và các phần còn lại
c, \(\frac{x-4}{5}=\frac{1}{5}\)Khử mẫu : \(x-4=1\Leftrightarrow x=5\)
d, \(x+12=2-x\Leftrightarrow2x=-10\Leftrightarrow x=-5\)
e, \(2\left(x-3\right)-3x+5=0\Leftrightarrow2x-6-3x+5=0\)
\(\Leftrightarrow-x-1=0\Leftrightarrow x=-1\)
a, (3x+1)(7x+3)=(5x-7)(3x+1)
<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0
<=> (3x+1)(7x+3-5x+7)=0
<=> (3x+1)(2x+10)=0
<=> 2(3x+1)(x+5)=0
=> 3x+1=0 hoặc x+5=0
=> x= -1/3 hoặc x=-5
Vậy...
a) (3x - 2)(4x + 5) = 0
⇔ 3x - 2 = 0 hoặc 4x + 5 = 0
1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3
2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4
Vậy phương trình có tập nghiệm S = {2/3;−5/4}
b) (2,3x - 6,9)(0,1x + 2) = 0
⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3
2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.
Vậy phương trình có tập hợp nghiệm S = {3;-20}
c) (4x + 2)(x2 + 1) = 0 ⇔ 4x + 2 = 0 hoặc x2 + 1 = 0
1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2
2) x2 + 1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)
Vậy phương trình có tập hợp nghiệm S = {−1/2}
d) (2x + 7)(x - 5)(5x + 1) = 0
⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2
2) x - 5 = 0 ⇔ x = 5
3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5
Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\left(ĐKXĐ:x\ne5\right)\)
\(\Rightarrow3\left(4x-3\right)=29\left(x-5\right)\)
\(\Leftrightarrow12x-9=29x-145\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x+136=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\left(tm\right)\)
Vậy \(S=\left\{8\right\}\)
\(2,\dfrac{2x-1}{5-3x}=2\left(ĐKXĐ:x\ne\dfrac{5}{3}\right)\)
\(\Rightarrow2x-1=2\left(5-3x\right)\)
\(\Leftrightarrow2x-1=10-6x\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x-11=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{11}{8}\right\}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\left(ĐKXĐ:x\ne1\right)\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2x-2}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{3x-2}{x-1}\)
\(\Rightarrow4x-5=3x-2\)
\(\Leftrightarrow4x-5-3x+2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\left(tm\right)\)
Vậy \(S=\left\{3\right\}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\left(ĐKXĐ:x\ne\dfrac{1}{2};x\ne-5\right)\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2+15x+25}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{15x+25}{2x\left(x+5\right)}=0\)
\(\Rightarrow15x+25=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=\dfrac{-5}{3}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{-5}{3}\right\}\)
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-29\left(x-5\right)}{3\left(x-5\right)}=0\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\)
\(2,\dfrac{2x-1}{5-3x}=2\)
\(\Leftrightarrow\dfrac{2x-1-2\left(5-3x\right)}{5-3x}=0\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5-2\left(x-1-x\right)}{x-1}=0\)
\(\Leftrightarrow4x-5-2x+2+2x=0\)
\(\Leftrightarrow4x=3\)
\(\Leftrightarrow x=\dfrac{3}{4}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)-2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow2x^2+10x+5x+25-2x^2=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=-\dfrac{5}{3}\)
1,\(\dfrac{x^2-6x+9}{x^2-8x+15}=\dfrac{\left(x-3\right)^2}{\left(x-3\right).\left(x-5\right)}=\dfrac{x-3}{x-5}\)
2,\(\dfrac{x^2+5x}{2x+10}=\dfrac{x.\left(x+5\right)}{2.\left(x+5\right)}=\dfrac{x}{2}\)
3,\(\dfrac{25-10x+x^2}{xy-5y}=\dfrac{\left(x-5\right)^2}{y.\left(x-5\right)}=\dfrac{x-5}{y}\)
4,\(\dfrac{x^2+3x-y^2-3y}{x^2-y^2}\\ \\ =\dfrac{\left(x+y\right).\left(x-y\right)+3.\left(x-y\right)}{\left(x-y\right).\left(x+y\right)}\\ \\ =\dfrac{\left(x-y\right).\left(x+y+3\right)}{\left(x-y\right).\left(x+y\right)}\\ \\ =\dfrac{x+y+3}{x+y}\)5,\(\dfrac{x^3+2x^2-x-2}{x^3-3x+2}=\dfrac{x^2.\left(x+2\right)-\left(x+2\right)}{x.\left(x^2-1\right)-2.\left(x-1\right)}\\ \\ \dfrac{\left(x+2\right).\left(x^2-1\right)}{x.\left(x+1\right).\left(x-1\right)-2.\left(x-1\right)}\\ =\dfrac{\left(x+2\right).\left(x+1\right).\left(x-1\right)}{\left(x-1\right).\left[\left(x+1\right).x-2\right]}=\dfrac{\left(x+2\right).\left(x+1\right)}{\left(x+1\right).x-2}\)
a, làm tương tự với phần b bài nãy bạn đăng
b, \(\left(x+1\right)^2-5=x^2+11\)
\(\Leftrightarrow x^2+2x+1-5=x^2+11\)
\(\Leftrightarrow2x-10=0\Leftrightarrow x=5\)
Vậy tập nghiệm của phương trình là S = { 5 } ( kết luận như thế với các phần sau nhé ! )
c, \(3\left(3x-1\right)=3x+5\Leftrightarrow9x-3-3x-5=0\)
\(\Leftrightarrow6x-8=0\Leftrightarrow x=\frac{4}{3}\)
d, \(3x\left(2x-3\right)-3\left(3+2x^2\right)=0\)
\(\Leftrightarrow6x^2-9x-9-6x^2=0\Leftrightarrow-9x=9\Leftrightarrow x=-1\)
e, khai triển nó ra rút gọn rồi giải thôi nhé! ( tự làm )
f, \(\left(x-1\right)^2-x\left(x+1\right)+3\left(x-2\right)+5=0\)
\(\Leftrightarrow x^2-2x+1-x^2+x+3x-6+5=0\)
\(\Leftrightarrow2x=0\Leftrightarrow x=\frac{0}{2}\)vô lí
Vậy phương trình vô nghiệm
a.(x-2)(x+2)(x2-10)=72
⇔(x2-4)(x2-10)=72
đặt x2-7=t.Ta có pt ẩn t:
(t2+3)(t2-3)=72
⇔t2-9-72=0
⇔t2-81=0
⇔(t-9)(t+9)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-7-9=0\\x^2-7+9=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=16\\x^2=-2\left(loại\right)\end{matrix}\right.\)
⇔x2=16
⇔x=4 hoặc x=-4
vậy pt đã cho có tập nghiệm là S=\(\left\{4;-4\right\}\)
b: =>(x^2+6x+5)(x^2+6x+8)=40
=>(x^2+6x)^2+13(x^2+6x)=0
=>(x^2+6x)(x^2+6x+13)=0
=>x=0 hoặc x=-6
c: \(\left(2x^2+3x-1\right)^2-5\left(2x^2+3x+3\right)+24=0\)
Đặt 2x^2+3x-1=a
=>a^2-5(a+4)+24=0
=>a^2-5a-20+24=0
=>(a-1)(a-4)=0
=>(2x^2+3x-2)(2x^2+3x-5)=0
=>\(x\in\left\{\dfrac{1}{2};-2;1;-\dfrac{5}{2}\right\}\)