![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì dãy số nằm trong khoảng từ 1-10 nên số thứ tự của nó có giá trị bằng chính nó
Ta có: Tổng của dãy là:
(1+1)+(2+2)+(3+3)+...+(10+10) = 2(1+2+3+...+10)=2.(10.11):2=110
Đáp số: 110
![](https://rs.olm.vn/images/avt/0.png?1311)
Do dãy 2000 số tự nhiên liên tiếp đó không có số nguyên tố nào nên chúng là hợp số.
Coi dãy đó chứa các số tự nhiên liên tiếp từ a + 2 đến a + 2001 \(\left(a\in N\right)\)
Để tất cả các số trên là hợp số thì a phải chia hết các số từ 2 đến 2001, vì vậy a = 2001!
Thế vào các số trên, ta có:
- a + 2 = 2001! + 2 = 2 ( 3 * 4 * 5 * ... * 2001 + 1 ) ( là hợp số ) - thoả mãn
- a + 3 = 2001! + 3 = 3 ( 2 * 4 * 5 * ... * 2001 + 1 ) ( là hợp số ) - thoả mãn
- a + 4 = 2001! + 4 = 4 ( 2 * 3 * 5 * ... * 2001 + 1 ) ( là hợp số ) - thoả mãn
...................................................................................................................................
- a + 2001 = 2001! + 2001 = 2001 ( 2 * 3 * 4 * ... * 2000 + 1 ) ( là hợp số ) - thoả mãn
Vậy trong tập hợp số tự nhiên, dãy có 2000 số tự nhiên liên tiếp mà không có 1 số nguyên tố nào là:
2001! + 2 ; 2001! + 3 ; 2001! + 4 ; .... ; 2001! + 1999 ; 2001! + 2000 ; 2001! + 2001
![](https://rs.olm.vn/images/avt/0.png?1311)
Có tồn tại , ta chứng minh như sau :
Đặt S = 2 . 3 . 4...... .2019 . 2020
Xét 2019 số tự nhiên liên tiếp :
S + 2 ; S + 3 ; S + 4 ; ......; S + 2020
Ta có :
S + 2 = 2 . 3 .4 ...... . 2019 . 2020 + 2 = 2 . ( 3 .4 . 5 ..... .2019 . 2020 + 1 ) là hợp số
S + 3 = 2 . 3 . 4 ...... . 2019 . 2020 + 3 = 3 . ( 2 . 4 . 5 ....... .2019 .2020 + 1 ) là hợp số
.......
S + 2020 = 2 . 3 .4 ........ .2019 . 2020 + 2020 = 2020 . ( 2 .3 .4 . 5 ....... 2019 + 1 ) là hợp số
\(\Rightarrow\)ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ 1 đến 9 có 9 chữ số
Từ 10 đến 99 có 90 số => có 90.2 = 180 (chữ số)
=> Còn lại số chữ số để viết các số có 3 chữ số là: 868 - 9 - 180 = 679
Ta có: 679 : 3 = 226 (dư 1)
=> Chữ số thứ 868 là chữ số thứ nhất của số có 3 chữ số thứ 227
Số có 3 chữ số thứ 227 là: 100 - 1 + 227 = 326
=> Chữ số thứ 868 là chữ số 3
Ta có : 1 -> 9 có 9 số
Từ 10 -> 99 có 90 số . Vậy nên số chứ số là : 90 x 2 = 180 chứ số
Số có 3 chữ số là : 868 - 9 - 180 = 679 số
Ta lại có : 679 : 3 = 226 ( dư 1 )
=> Đó là số thứ 227
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi 13 số đó lần lượt là a1; a2; a3; ... ; a13 (số 112 là a2,số 215 là a7).
Ta có: a1+a2+a3=a2+a3+a4⇒a1=a4 (1)
a2+a3+a4=a3+a4+a5⇒a2=a5 (2)
.......................
a10+a11+a12=a11+a12+a13⇒a10=a13 (10)
Từ (1), (2) , ... , (10) ta có :
a1=a4=a7=a10=a13=215
a2=a5=a8=a11=112
a3=a6=a9=a12
Do a1+a2+a3=428⇒a3=428−215−112=101
Vậy nên a3=a6=a9=a12=101
Ta có dãy số :
215 112 101 215 112 101 215 112 101 215 112 101 215
Tổng các chữ số của dãy là:
(2 + 1 + 5) x 5 + (1 + 1 + 2) x 4 + (1 + 0 + 1) x 4 = 40 + 16 + 8 = 64
Vậy tổng của tất cả các chữ số trong dãy số là 64.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gỉa sử ba số a,b,c là ba số bất kì được chọn mà a+b,b+c,a+c đều chia hết cho 28.
Xét hai trường hợp:
TH1:
Trong ba số a,b,c có ít nhất một số chia hết cho 28. Khi đó hai số kia cũng phải chia hết cho 28. Do đó cả ba số chia hết cho 28.
Ta có 2017:28 = 72 (dư 1).
Như vậy nếu ta chọn trong dãy các số 28, 28.2; 28.3;....;28.72 thì ta chọn được nhiều nhất 72 số.
TH2:
Trong ba số a, b, c không có số nào chia hết cho 28.
Gọi số dư của 3 số khi chia cho 28 là x, y, z.
Do a + b; b + c; c + a chia hết cho 28 nên x + y = y + z = z + x = 28. Suy ra x = y = z = 14.
Do đó mỗi số a, b, c chia 28 dư 14.
Ta có 2017 : 14 = 144 (dư 1)
Như vậy nếu ta chọn trong dãy các số:14; 14.3;14. 5;......; 14.143.
Thì ta chọn nhiều nhất 73 số.
So sánh hai trường hợp ta chọn được nhiều nhất 73 số thỏa mãn bài toán.
Câu hỏi đâu bn