K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2019

\(A=\frac{1}{1\times6\times6}+\frac{1}{2\times9\times8}+\frac{1}{3\times12\times10}+...+\frac{1}{98\times297\times200}\)

\(A=\frac{1}{1\times\left(2\times3\right)\times\left(2\times3\right)}+\frac{1}{2\times\left(3\times3\right)\times\left(2\times4\right)}+...+\frac{1}{98\times\left(99\times3\right)\times\left(100\times2\right)}\)

\(A=\frac{1}{6}\times\left(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+...+\frac{1}{98\times99\times100}\right)\)

\(12\times A=\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+...+\frac{2}{98\times99\times100}\)

\(12\times A=\left(\frac{1}{1\times2}-\frac{1}{2\times3}\right)+\left(\frac{1}{2\times3}-\frac{1}{3\times4}\right)+...+\left(\frac{1}{98\times99}-\frac{1}{99\times100}\right)\)

\(12\times A=\frac{1}{1\times2}-\frac{1}{99\times100}=\frac{4949}{9900}\)

\(A=\frac{4949}{118800}\)