Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(\frac{30}{x}+\frac{6x}{5}\right)+\left(\frac{y}{5}+\frac{5}{y}\right)+\frac{4}{5}\left(x+y\right)\)
\(\ge2\sqrt{\frac{30}{x}.\frac{6x}{5}}+2.\sqrt{\frac{y}{5}.\frac{5}{y}}+\frac{4}{5}.10\)
\(=2.6+2.1+8=22\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\frac{30}{x}=\frac{6x}{5}\\\frac{y}{5}=\frac{5}{y}\\x+y=10\end{cases}}\Rightarrow\hept{\begin{cases}x^2=25\\y^2=25\\x+y=10\end{cases}}\Rightarrow x=y=5\)
Vậy \(P_{min}=22\Leftrightarrow x=y=5\)
Áp dụng bđt cosi ta có :
P = (6/5.x + 30/x) + (y/5 + 5/y) + 4/5.(x+y)
>= 2\(\sqrt{\frac{6x}{5}.\frac{30}{x}}\)+ 2\(\sqrt{\frac{y}{5}.\frac{5}{y}}\) + 4/5.(x+y)
= 2.6+2.1+4/5.(x+y)
>= 12+2+4/5.10 = 22
Dấu "=" xảy ra <=> x=y=5
Vậy GTNN của P = 22 <=> x=y=5
Tk mk nha
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
\(P=\frac{6}{5}x+\frac{30}{x}+\frac{y}{5}+\frac{5}{y}+\frac{4}{5}\left(x+y\right)\)
Áp dụng BĐT cô si cho hai số dương ko âm ,ta có:
\(P\ge12+2+\frac{4}{5}\cdot10=22\)
Dấu "=" xảy ra khi x=y=5
câu hỏi của bạn cx ko khó nhưng dòng cuối mk nghĩ ko nên cho vào thì chắc sẽ có nhiều người trả lời hơn(chỉ là ý kiến của mk mong bạn đừng ném đá)