Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-x\right)^2=12+4x-4x^2\)
\(\Rightarrow\left(x^2-x\right)^2+4x^2-4x-12=0\)
\(\Rightarrow x^4-2x^3+5x^2-4x-12=0\)
\(\Rightarrow\left(x-2\right)\left(x+1\right)\left(x^2-x+6\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=-1\end{cases}tm}\)
Đặt \(t=x^2+x+1\)
\(\Rightarrow t^2=x^4+x^2+1+2x^3+2x^2+2x=x^4+x^2+1+2x\left(x^2+x+1\right)=x^4+x^2+1+2xt\)
\(\Rightarrow t^2-2xt=x^4+x^2+1\)
PT của đề bài \(\Leftrightarrow t^2=3t\left(t-2x\right)\Leftrightarrow t\left(3t-6x-t\right)=0\Leftrightarrow t\left(t-3x\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+1-3x\right)=0\Leftrightarrow\left(x^2+x+1\right)\left(x-1\right)^2=0\)(2)
Do x2 + x + 1 >0 với mọi x nên (2) <=> x=1
PT có nghiệm duy nhất x = 1.
( x ²+x) ²+4.( x ²+x)= 12
⇔ ( x²+x)²+4( x²+x)+4= 16
⇔ ( x²+x+2)²= 16
⇔ x²+x+2= ±4
Nếu x²+x+2= 4
⇔ x²+x-2= 0
⇔ ( x-1).( x+2)= 0
⇔ x= 1 hoặc x= -2
Nếu x²+x+2= -4
⇔ x²+x+6= 0
⇔ x²+2.0,5.x+0,25+5,75= 0
⇔ ( x+0,5)²= -5,75
⇒ Phương trình vô nghiệm
Vậy x= 1 hoặc x= -2
P/s:#Học Tốt#
\(\left(x^2+x\right)^2+4\left(x^2+x\right)-12=0\)
\(x^2\left(x+1\right)^2+4x\left(x+1\right)-12=0\)
\(x^4+2x^3+x^2+4x^2+4x-12=0\)
\(x^4+2x^3+5x^2+4x-12=0\)
\(\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)=0\)
\(x^2+x+6=0\)
=> vô nghiệm
\(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)
a) x(4x + 2) = 4x2 - 14
⇔ 4x2 + 2x = 4x2 - 14
⇔ 4x2 - 4x2 + 2x = -14
⇔ 2x = -14
⇔ x = -7
Vậy tập nghiệm S = ......
b) (x2 - 9)(2x - 1) = 0
⇔ x2 - 9 = 0 hoặc 2x - 1 = 0
⇔ x2 = 9 hoặc 2x = 1
⇔ x = 3 hoặc -3 hoặc x = \(\dfrac{1}{2}\)
Vậy .......
c) \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{x^2-4}\)
⇔ \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{\left(x-2\right)\left(x+2\right)}\)
ĐKXĐ: x - 2 ≠ 0 và x + 2 ≠ 0
⇔ x ≠ 2 và x ≠ -2MSC (mẫu số chung): (x - 2)(x + 2)Quy đồng mẫu hai vế và khử mẫu ta được:3x + 6 + 4x - 8 = x - 12⇔ 3x + 4x - x = 8 - 6 - 12⇔ 6x = -10⇔ x = \(-\dfrac{5}{3}\) (nhận)Vậy ........a: =>(2x-5x-1)(2x+5x+1)=0
=>(-3x-1)(7x+1)=0
=>x=-1/3 hoặc x=-1/7
b: =>(5x-5)^2-(x+2)^2=0
=>(5x-5-x-2)(5x-5+x+2)=0
=>(4x-7)(6x-3)=0
=>x=1/2 hoặc x=7/4
c: =>(x^2+4x-1-x^2+3x-2)(x^2+4x-1+x^2-3x+2)=0
=>(7x-3)(2x^2+x+1)=0
=>7x-3=0
=>x=3/7
a: Đặt \(a=x^2+x\)
Phương trình ban đầu sẽ trở thành \(a^2+4a-12=0\)
=>\(a^2+6a-2a-12=0\)
=>a(a+6)-2(a+6)=0
=>(a+6)(a-2)=0
=>\(\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)
=>\(x^2+x-2=0\)(Vì \(x^2+x+6=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0\forall x\))
=>\(\left(x+2\right)\left(x-1\right)=0\)
=>\(\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
b:
Sửa đề: \(\left(x^2+2x+3\right)^2-9\left(x^2+2x+3\right)+18=0\)
Đặt \(b=x^2+2x+3\)
Phương trình ban đầu sẽ trở thành \(b^2-9b+18=0\)
=>\(b^2-3b-6b+18=0\)
=>b(b-3)-6(b-3)=0
=>(b-3)(b-6)=0
=>\(\left(x^2+2x+3-3\right)\left(x^2+2x+3-6\right)=0\)
=>\(\left(x^2+2x\right)\left(x^2+2x-3\right)=0\)
=>\(x\left(x+2\right)\left(x+3\right)\left(x-1\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x+2=0\\x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=-3\\x=1\end{matrix}\right.\)
c: \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)
=>\(\left(x^2-4\right)\left(x^2-10\right)=72\)
=>\(x^4-14x^2+40-72=0\)
=>\(x^4-14x^2-32=0\)
=>\(\left(x^2-16\right)\left(x^2+2\right)=0\)
=>\(x^2-16=0\)(do x2+2>=2>0 với mọi x)
=>x2=16
=>x=4 hoặc x=-4
X é t p h ư ơ n g t r ì n h 1 t a c ó x + 2 3 + x - 3 3 = 0 1 x + 2 3 - 3 - x 3 = 0 x + 2 3 = 3 - x 3 x + 2 = 3 - x 2 x = 1 x = 1 2 X é t p h ư ơ n g t r ì n h 2 t a c ó x 2 + x - 1 2 + 4 x 2 + 4 x = 0 2 x 2 + x - 1 2 + 4 x 2 + 4 x - 4 + 4 = 0 x 2 + x - 1 2 + 4 x 2 + x - 1 + 4 = 0 x 2 + x - 1 + 2 2 = 0 x 2 + x + 1 2 = 0 x 2 + x + 1 = 0 x 2 + x + 1 4 + 3 4 = 0 x + 1 2 2 + 3 4 = 0 V ì x + 1 2 2 + 3 4 > 0 , ∀ x n ê n p h ư ơ n g t r ì n h 2 v ô n g h i ệ m
Vậy Phương trình (1) có 1 nghiệm, phương trình (2) vô nghiệm
Đáp án cần chọn là: D
(x2-x)2=12+4x-4x2
=>(x2-x)2+4x2-4x-12=0
=>x4-2x3+5x2-4x-12=0
=>(x-2)(x+1)(x2-x+6)=0
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}\left(tm\right)}\)