K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2016

\(\left(x^2-x\right)^2=12+4x-4x^2\)

\(\Rightarrow\left(x^2-x\right)^2+4x^2-4x-12=0\)

\(\Rightarrow x^4-2x^3+5x^2-4x-12=0\)

\(\Rightarrow\left(x-2\right)\left(x+1\right)\left(x^2-x+6\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=-1\end{cases}tm}\)

29 tháng 6 2016

(x2-x)2=12+4x-4x2

=>(x2-x)2+4x2-4x-12=0

=>x4-2x3+5x2-4x-12=0

=>(x-2)(x+1)(x2-x+6)=0

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}\left(tm\right)}\)

29 tháng 6 2016

Đặt \(t=x^2+x+1\)

\(\Rightarrow t^2=x^4+x^2+1+2x^3+2x^2+2x=x^4+x^2+1+2x\left(x^2+x+1\right)=x^4+x^2+1+2xt\)

\(\Rightarrow t^2-2xt=x^4+x^2+1\)

PT của đề bài \(\Leftrightarrow t^2=3t\left(t-2x\right)\Leftrightarrow t\left(3t-6x-t\right)=0\Leftrightarrow t\left(t-3x\right)=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+1-3x\right)=0\Leftrightarrow\left(x^2+x+1\right)\left(x-1\right)^2=0\)(2)

Do x2 + x + 1 >0 với mọi x nên (2) <=> x=1

PT có nghiệm duy nhất x = 1.

13 tháng 10 2017

20 tháng 4 2020

( x ²+x) ²+4.( x ²+x)= 12

⇔ ( x²+x)²+4( x²+x)+4= 16

⇔ ( x²+x+2)²= 16

⇔ x²+x+2= ±4

Nếu x²+x+2= 4 

⇔ x²+x-2= 0

⇔ ( x-1).( x+2)= 0

⇔ x= 1 hoặc x= -2

Nếu x²+x+2= -4

⇔ x²+x+6= 0

⇔ x²+2.0,5.x+0,25+5,75= 0

⇔ ( x+0,5)²= -5,75

⇒ Phương trình vô nghiệm

Vậy x= 1 hoặc x= -2

P/s:#Học Tốt#

\(\left(x^2+x\right)^2+4\left(x^2+x\right)-12=0\)

\(x^2\left(x+1\right)^2+4x\left(x+1\right)-12=0\)

\(x^4+2x^3+x^2+4x^2+4x-12=0\)

\(x^4+2x^3+5x^2+4x-12=0\)

\(\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)=0\)

\(x^2+x+6=0\)

=> vô nghiệm 

\(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)

20 tháng 3 2022

a) x(4x + 2) = 4x2 - 14

⇔ 4x2 + 2x = 4x2 - 14

⇔ 4x2 - 4x2 + 2x = -14

⇔ 2x = -14

⇔ x = -7

Vậy tập nghiệm S = ......

b) (x2 - 9)(2x - 1) = 0

⇔ x2 - 9 = 0 hoặc 2x - 1 = 0

⇔ x2 = 9 hoặc 2x = 1

⇔ x = 3 hoặc -3 hoặc x = \(\dfrac{1}{2}\)

Vậy .......

c) \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{x^2-4}\) 

⇔ \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{\left(x-2\right)\left(x+2\right)}\)

ĐKXĐ: x - 2 ≠ 0 và x + 2 ≠ 0

       ⇔ x ≠ 2 và x ≠ -2MSC (mẫu số chung): (x - 2)(x + 2)Quy đồng mẫu hai vế và khử mẫu ta được:3x + 6 + 4x - 8 = x - 12⇔ 3x + 4x - x = 8 - 6 - 12⇔ 6x = -10⇔ x = \(-\dfrac{5}{3}\) (nhận)Vậy ........
23 tháng 2 2023

a: =>(2x-5x-1)(2x+5x+1)=0

=>(-3x-1)(7x+1)=0

=>x=-1/3 hoặc x=-1/7

b: =>(5x-5)^2-(x+2)^2=0

=>(5x-5-x-2)(5x-5+x+2)=0

=>(4x-7)(6x-3)=0

=>x=1/2 hoặc x=7/4

c: =>(x^2+4x-1-x^2+3x-2)(x^2+4x-1+x^2-3x+2)=0

=>(7x-3)(2x^2+x+1)=0

=>7x-3=0

=>x=3/7

a: Đặt \(a=x^2+x\)

Phương trình ban đầu sẽ trở thành \(a^2+4a-12=0\)

=>\(a^2+6a-2a-12=0\)

=>a(a+6)-2(a+6)=0

=>(a+6)(a-2)=0

=>\(\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)

=>\(x^2+x-2=0\)(Vì \(x^2+x+6=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0\forall x\))

=>\(\left(x+2\right)\left(x-1\right)=0\)

=>\(\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

b:

Sửa đề: \(\left(x^2+2x+3\right)^2-9\left(x^2+2x+3\right)+18=0\)

Đặt \(b=x^2+2x+3\)

Phương trình ban đầu sẽ trở thành \(b^2-9b+18=0\)

=>\(b^2-3b-6b+18=0\)

=>b(b-3)-6(b-3)=0

=>(b-3)(b-6)=0

=>\(\left(x^2+2x+3-3\right)\left(x^2+2x+3-6\right)=0\)

=>\(\left(x^2+2x\right)\left(x^2+2x-3\right)=0\)

=>\(x\left(x+2\right)\left(x+3\right)\left(x-1\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\x+2=0\\x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=-3\\x=1\end{matrix}\right.\)

c: \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

=>\(\left(x^2-4\right)\left(x^2-10\right)=72\)

=>\(x^4-14x^2+40-72=0\)

=>\(x^4-14x^2-32=0\)

=>\(\left(x^2-16\right)\left(x^2+2\right)=0\)

=>\(x^2-16=0\)(do x2+2>=2>0 với mọi x)

=>x2=16

=>x=4 hoặc x=-4

13 tháng 8 2017

X é t   p h ư ơ n g   t r ì n h   1     t a   c ó   x + 2 3 + x - 3 3 = 0   1 x + 2 3 -   3 - x 3 = 0   x + 2 3 = 3 - x 3   x + 2   = 3 - x   2 x = 1     x = 1 2 X é t   p h ư ơ n g   t r ì n h   2   t a   c ó   x 2 + x - 1 2 + 4 x 2 + 4 x = 0   2 x 2 + x - 1 2 +   4 x 2 + 4 x - 4 + 4 = 0 x 2 + x - 1 2 + 4 x 2 + x - 1 + 4 = 0 x 2 + x - 1 + 2 2 = 0 x 2 + x + 1 2   =   0 x 2 + x + 1 = 0   x 2 + x + 1 4 + 3 4 = 0   x + 1 2 2 + 3 4 = 0 V ì   x + 1 2 2 +   3 4 > 0 ,   ∀ x   n ê n   p h ư ơ n g   t r ì n h   2   v ô   n g h i ệ m

Vậy Phương trình (1) có 1 nghiệm, phương trình (2) vô nghiệm

Đáp án cần chọn là: D

14 tháng 8 2019