Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C thay đổi để Uc max thì điện áp uRL vuông pha với u. Ta có giản đồ véc tơ sau:
i U U U=30 O M N J RL C U = 32 L
Xét tam giác vuông OMN:
\(ON^2=NJ.NM\Rightarrow 30^2=(U_C-32).U_C\)
\(\Rightarrow U_C^2-32U_C-30^2=0\)
Giải PT ta được \(U_C=50V\)
Chọn D.
Đặt một điện áp xoay chiều với giá trị hiệu dụng U= 30V vào hai đầu đoạn mạch R, L, C mắc nối tiếp có điện dung C thay đổi được. Khi điện áp hiệu dụng giữa hai bản tụ điện đạt giá trị cực đại UCmax thì hiệu điện thế hiệu dụng giữa hai đầu cuộn cảm là UL = 32V. Giá trị UCmax là
A. 18V
B. 25V
C. 40V
D. 50V
Bài này chỉ cần sử dụng công thức 2 giá trị của C để có cùng 1 giá trị của $U_C$ :
$U_C=U_{C_{max}} \cos \left(\dfrac{\varphi _1-\varphi _2}{2} \right)$
$\Rightarrow U_{C_{max}}=\dfrac{60}{\cos \dfrac{\pi }{6}}=40\sqrt{3} V$
Khi $U_{C_{max}}$ ta có:
$P=\dfrac{U^2}{R}\cos ^2\varphi _3=P_{max}\cos ^2\varphi _3=\dfrac{P_{max}}{2}$
$\Rightarrow \cos \varphi _3=\dfrac{\sqrt{2}}{2}$
Vẽ giản đồ suy ra: $U=\dfrac{U_{C_{max}}}{\sqrt{2}}=20\sqrt{6}\left(V \right)$
Đặt điện áp u = U0cos100πt vào hai đầu đoạn mạch AB theo thứ tự gồm R
=> Điện áp cực đại:
i U U U U U L C R LR RC 3 1
Nhận xét: Do R2 = L/C nên URL vuông pha URC
Không mất tính tổng quát, ta giả sử URL là \(\sqrt{3}\) phần, URC là 1 phần
Từ giản đồ véc tơ, ta có: \(\frac{1}{U_R^2}=\frac{1}{U_{RL}^2}+\frac{1}{U_{RC}^2}=\frac{1}{3}+1=\frac{4}{3}\Rightarrow U_R=\frac{\sqrt{3}}{2}\)
Suy ra: \(U_C=\sqrt{1^2-\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{1}{2}\)
\(U_L=\sqrt{\left(\sqrt{3}\right)^2-\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{3}{2}\)
Vậy \(\cos\varphi=\frac{U_R}{U}=\frac{\frac{\sqrt{3}}{2}}{\sqrt{\left(\frac{\sqrt{3}}{2}\right)^2+\left(\frac{3}{2}-\frac{1}{2}\right)^2}}=\sqrt{\frac{3}{7}}\)
Đáp án C
Phương pháp: Mạch điện xoay chiều RLC mắc nối tiếp có L thay đổi
Cách giải:
+ Do uL và uC ngược pha nhau => tại mọi thời điểm ta có:
+ Khi L = L0 thì điện áp hiệu dụng hai đầu cuộn dây đạt cực đại nên:
\(Z_C=40\Omega\)
Đoạn mạch AM có: \(\tan\varphi_{AM~i}=\frac{-Z_C}{R_1}=-1\)\(\Rightarrow\varphi_{AM~i}=-\frac{\pi}{4}\)\(\Rightarrow\varphi_{AM}-\varphi_i=-\frac{\pi}{4}\Rightarrow\varphi_i=\varphi_{AM}+\frac{\pi}{4}=-\frac{7\pi}{12}+\frac{\pi}{4}=-\frac{\pi}{3}\)
\(u_{AB}\) là tổng hợp của \(u_{AM}\) và \(u_{MB}\) nên: \(u_{AB}=221\cos\left(100\pi t-0,587\right)\)(Tổng hợp bằng máy tính) \(\Rightarrow\varphi_{AB}=-0,587\)
Như vậy, độ lệch pha của \(u_{AB}\) đối với \(i\)là: \(\varphi=\varphi_{AB}-\varphi_i=-0,587+\frac{\pi}{3}=0,46\)
Hệ số công suất \(\cos\varphi=\cos0,46=0,896\)