Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \([(x-y)3 + (y-z)3]+ (z-x)3\)=\(\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)
\(=\left(x-z\right)\left[\left(\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right)\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]=\left(x-z\right)\left[\left(x-2y+z\right)\left(x+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)=\left(x-z\right)\left(x-y\right)\left(z-y\right)3\)
b) \(=y^2\left(x^2y-x^3+z^3-z^2y\right)-z^2x^2\left(z-x\right)=y^2\left[-y\left(z^2-x^2\right)-\left(z^3-x^3\right)\right]-z^2x^2\left(z-x\right)\)
\(=y^2\left(z-x\right)\left(-yz-xy-z^2-zx-x^2\right)-z^2x^2\left(z-x\right)=\left(z-x\right)\left(-y^3z-xy^2-z^2y^2-xyz-x^2y^2-z^2x^2\right)\)
đến đây coi như là thành nhân tử rồi nha. em muốn gọn thì ráng ngồi nghĩ rồi tách nha. chỉ cần nhóm mấy cái có ngoặc giống nhau là đc. k khó đâu. chịu khó nghĩ để rèn luyện nha
c) \(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)
\(\left(9a^3-6a^2\right)+\left(6a^2-4a\right)+\left(-9a+6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)
d) em sửa đề đi. đề sai rồi. đồng nhất hệ số phải có dấu bằng nha.
có gì liên hệ chị. đúng nha ;)
6,
=a4 [-(a-b)-(c-a)] + [b4(c-a)+c4(a-b)]
=rồi nhóm hạng tử chung lại
=và sau đó tách ra bằng hằng đẳng thức
kết quả =(a-b)(c-a)(c-b)(a2+b2+c2+ab+bc+ca)
Bài này khá dài nên mk nhác viết , bn cố gắng làm bài nhé !
\(1,x+y+z=0=>x=-\left(y+z\right)\)
\(=>x^2=\left(y+z\right)^2=y^2+2yz+z^2\)
\(=>x^2-y^2-z^2=2yz\)
\(=>\left(x^2-y^2-z^2\right)^2=\left(2yz\right)^2=4y^2z^2\)
\(=>x^4+y^4+z^4-2x^2y^2-2x^2z^2+2y^2z^2=4y^2z^2\)
\(=>x^4+y^4+z^4=4y^2z^2-2y^2z^2+2x^2z^2+2x^2y^2=2x^2y^2+2y^2z^2+2x^2z^2\)
\(=>2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\left(đpcm\right)\)
\(2,A=2\left(x^6-y^6\right)-3\left(x^4+y^4\right)\)
\(=2\left[\left(x^2\right)^3-\left(y^2\right)^3\right]-3\left(x^4+y^4\right)\)
\(=2\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)-3\left(x^4+y^4\right)\)
\(=2\left(x^4+x^2y^2+y^4\right)-3\left(x^4+y^4\right)\)
\(=2x^4+2x^2y^2+2y^4-3x^4-3y^4=-x^4+2x^2y^2-y^4\)
\(=-\left(x^4-2x^2y^2+z^4\right)=-\left[\left(x^2-y^2\right)^2\right]=-1\) (do x2-y2=1)
\(3,\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)
\(=\left(x-3\right)\left(x+3\right)\left(x-1\right)\left(x+1\right)+15=\left(x^2-9\right)\left(x^2-1\right)+15\left(1\right)\)
Đặt \(x^2-5=t\),khi đó (1) trở thành :
\(\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)\)
\(=\left(x^2-6\right)\left(x^2-4\right)=\left(x^2-6\right)\left(x-2\right)\left(x+2\right)\)
\(4,a,20^n-1=20^n-1^n=\left(20-1\right)\left(20^{n-1}+20^{n-1}+...+1^{n-1}\right)\)
chia hết cho (20-1)=19
=>20n-1 là hợp số vì có nhiều hơn 2 ước
b) đang kẹt,vấn đề nằm ở đề
2.Câu hỏi của Lãnh Hàn Thần - Toán lớp 8 - Học toán với OnlineMath
( x^2 + x^3 + x^4 ) ( y^6 + z^7 + x^8 )
= ( x^2 + x^3 + x^4 ) . x^8 + ( x^2 + x^3 + x^4 ) . ( y^6 + z^7 )
= ( x^10 + x^11 + x^12 ) + ( x^2 + x^3 + x^4 ) ( y^6 + z^7 )
= ( x^12 - x^9 ) + ( x^4 - x ) ( y^6 + z^7 )
Đến đây bí
Nhanh lên nhé
Mình đăng lên hộ bạn mình
Các bạn giúp bạn ấy nha