Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y^4+64
=(y^2)^2+16y^2+64-16y^2
=(y^2+8-4x)(x^2+8+4x)
x^2+4
=x^2+2x^2+4-2x^2
=(x+2)^2-2x^2
=(x^2+2-2x)(x^2+2+2x)
x^4+16
=(x^2)^2+4x^2+16-4x^2
=(x+4)^2-4x^2
=(x^2+4-4x)(x^2+4+4x)
x^4y^4+4
=x^4y^4+4x^4+2^2-4x^4
=(x^4y^4+2)^2-(2x^2)^2
=(x^4y^4+2+2x^2)(x^4y^4+2-2x^2)
4x^4y^4+1
=4x^4y^4+x^4+1-x^4
=(2x^4y^4+1)^2-(x^2)^2
=(2x^4y^4+1-x^2)(2x^4y^4+1+x^2)
Mình ko bt câu D đúng hay sai nữa. Mà lỡ sai bạn đừng giận mình nha!
x4y4 + 4
= x4y4 + 4x2y2 + 4 - 4x2y2
= (x2y2 + 2)2 - (2xy)2
= (x2y2 - 2xy + 2)(x2y2 + 2xy + 2)
x4y4 + 64
= x4y4 + 16x2y2 + 64 - 16x2y2
= (x2y2 + 8)2 - (4xy)2
= (x2y2 - 4xy + 8)(x2y2 + 4xy + 8)
x5 + x + 1
= x5 - x2 + x2 + x + 1
= x2(x3 - 1) + (x2 + x + 1)
= x2(x - 1)(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)[x2(x - 1) + 1]
Bài 1, dạng 1:
a) Biểu thức không phân tích được thành nhân tử.
b)
\(x^4y^4+64=(x^2y^2)^2+8^2=(x^2y^2)^2+8^2+2.x^2y^2.8-16x^2y^2\)
\(=(x^2y^2+8)^2-(4xy)^2=(x^2y^2+8-4xy)(x^2y^2+8+4xy)\)
c)
\(x^4y^4+4=(x^2y^2)^2+2^2=(x^2y^2)^2+2^2+2.x^2y^2.2-4x^2y^2\)
\(=(x^2y^2+2)^2-(2xy)^2=(x^2y^2+2-2xy)(x^2y^2+2+2xy)\)
f)
\(x^8+x+1=x^8-x^2+x^2+x+1\)
\(=x^2(x^6-1)+(x^2+x+1)=x^2(x^3-1)(x^3+1)+(x^2+x+1)\)
\(=x^2(x-1)(x^2+x+1)(x^3+1)+(x^2+x+1)\)
\(=(x^2+x+1)[x^2(x-1)(x^3+1)+1]=(x^2+x+1)(x^6-x^5+x^3-x^2+1)\)
g)
\(x^8+x^7+1=x^8-x^2+x^7-x+x^2+x+1\)
\(=x^2(x^6-1)+x(x^6-1)+x^2+x+1\)
\(=(x^6-1)(x^2+x)+x^2+x+1\)
\(=(x^3-1)(x^3+1)(x^2+x)+x^2+x+1\)
\(=(x-1)(x^2+x+1)(x^3+1)(x^2+x)+(x^2+x+1)\)
\(=(x^2+x+1)[(x-1)(x^3+1)(x^2+x)+1]=(x^2+x+1)(x^6-x^4+x^3-x+1)\)
h)
Biểu thức không phân tích được thành nhân tử.
k)
\(x^4+4y^4=(x^2)^2+(2y^2)^2+2x^2.2y^2-4x^2y^2\)
\(=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)\)
l)
\(4x^4+1=(2x^2)^2+1^2+2.2x^2.1-4x^2\)
\(=(2x^2+1)^2-(2x)^2=(2x^2+1-2x)(2x^2+1+2x)\)
Bài 2 dạng 4
a)
\(a^2-b^2-2x(a-b)=(a^2-b^2)-2x(a-b)=(a-b)(a+b)-2x(a-b)\)
\(=(a-b)(a+b-2x)\)
b)
\(a^2-b^2-2x(a+b)=(a^2-b^2)-2x(a+b)\)
\(=(a-b)(a+b)-2x(a+b)=(a+b)(a-b-2x)\)
a)x^2-(a+b)x+ab
= x^2 - ax - bx + ab
= (x^2 - ax) - (bx - ab)
= x(x-a) - b(x-a)
= (x-b)(x-a)
b)7x^3-3xyz-21x^2+9z
=
c)4x+4y-x^2(x+y)
= 4(x + y) - x^2(x+y)
= (4-x^2) (x+y)
= (2-x)(2+x)(x+y)
d) y^2+y-x^2+x
= (y^2 - x^2) + (x+y)
= (y-x)(y+x)+ (x+y)
= (y-x+1) (x+y)
e)4x^2-2x-y^2-y
= [(2x)^2 - y^2] - (2x +y)
= (2x-y)(2x+y) - (2x+y)
= (2x -y -1)(2x+y)
f)9x^2-25y^2-6x+10y
=
a)=x2-2x+1-y2-2y-1
=(x-1)2-(y+1)2
=(x-1+y+1)(x-1-y-1)=(x+y)(x-y-2)
\(x^4y^4+64=x^4y^4+16x^2y^2+64-16x^2y^2=\left(x^2y^2+8\right)^2-16x^2y^2=\left(x^2y^2-4xy+8\right)\left(x^2y^2+4xy+8\right)\)
\(x^8+x+1=x^8-x^2+\left(x^2+x+1\right)=x^2\left(x^6-1\right)+\left(x^2+x+1\right)=x^2\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)=x^2\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)+x^2+x+1=\left(x^2+x+1\right)\text{[}x^2\left(x+1\right)\left(x-1\right)\left(x^2-x+1\right)+1\text{]}\)
\(g,tach:x^2+x+1\)
\(x^4+4y^4=x^4+4x^2y^2+4y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\) \(4x^4+1=4x^4+4x^2+1-4x^2=\left(2x^2+1\right)^2-\left(2x\right)^2=\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)\)
\(a^2-b^2-2x\left(a-b\right)=\left(a+b\right)\left(a-b\right)-2x\left(a-b\right)=\left(a+b-2x\right)\left(a-b\right)\)
\(a^2-b^2-2x\left(a+b\right)=\left(a-b\right)\left(a+b\right)-2x\left(a+b\right)=\left(a-b-2x\right)\left(a+b\right)\)