ΔABC,Aˆ=90o

AH⊥BC tại H

HP⊥A...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔEAH có

AP là đường cao

AP là đường trung tuyến

Do đó: ΔEAH cân tại E

mà AB là đường cao

nên AB là phân giác của góc HAE(1)

Xét ΔHAF có 

AQ là đường cao

AQ là đường trung tuyến

Do đó: ΔHAF cân tại A

mà AC là đường cao

nên AC là đường phân giác(2)

Từ (1) và (2) suy ra \(\widehat{EAF}=2\cdot90^0=180^0\)

hay E,A,F thẳng hàng

25 tháng 11 2017

Hình vẽ

B H C P E A F Q

Bài làm

Câu a)

Có góc APH = 90 độ ( HP vuông góc với AB)

Mà góc APH + góc APE = 180 độ (kề bù)

Suy ra góc APE = APH = 90 độ 

Xét tam giác APE và tam giác APH có

+ PE = PH (gt)

+ góc APE = góc APH = 90 độ (cmt)

+ AP là cạnh chung

Do đó tam giác APE = tam giác APH (c.g.c)

Có góc AQH + góc AQF = 180 độ (kề bù)

Suy ra góc AQH = góc AQF = 90 độ

Xét tam giác AQH và tam giác AQF có

+ QH = QF (gt)

+ góc AQH = góc AQF = 90 độ (cmt)

+ AQ là cạnh chung

Do đó tam giác AQH = tam giác AQF

Câu b)

Gợi ý: Để chứng minh E, A, F thẳng hàng cần phải chứng minh (cách đơn giản nhất) góc EAF là góc bẹt hay nói cách khác là góc EAF = 180 độ

Trong hình có

Vì tam giác AQF = tam giác AQH (cmt)

Nên góc QAF = góc QAH (hai góc tương ứng)

Vì tam giác APE = tam giác APH (cmt)

Nên góc PAE = góc PAH (hai góc tương ứng)

Mà góc PAQ = góc QAH + góc PAH = 90 độ ( AH nằm giữa AP và AQ)

Suy ra góc QAF + góc PAE = 90 độ

 Mà góc EAF = góc EAP + góc BAC + góc QAF

Suy ra góc EAF = 90 độ + góc EAP + góc QAF

Suy ra góc EAF = 90 độ + 90 độ = 180 độ 

Vậy E, A, F thẳng hàng

4 tháng 3 2017

Nguyễn Huy TúNguyễn Huy Thắngsoyeon_Tiểubàng giải giúp mình với mai mình học rồi

a: Xét ΔAPE vuông tại P và ΔAPH vuông tại P có

AP chung

PE=PH

Do đó: ΔAPE=ΔAPH

Suy ra: \(\widehat{EAP}=\widehat{HAP}\)

hay AB là phân giác của góc HAE(1)

Xét ΔAHQ vuông tại Q và ΔAFQ vuông tại Q có

AQ chung

HQ=FQ
Do đó: ΔAHQ=ΔAFQ

Suy ra: \(\widehat{HAQ}=\widehat{FAQ}\)

hay AC là tia phân giác của góc FAH(2)

b: Từ (1) và (2) suy ra \(\widehat{FAE}=2\cdot90^0=180^0\)

=>F,A,E thẳng hàng

9 tháng 6 2020

a. Tam giác ABC cân tại A suy ra AH là đường cao cũng là đường phân giác góc A

\(\Rightarrow\widehat{HAP}=\widehat{HAQ}\)

xét 2 tam giác vuông AHP và AHQ có:

AH chung

góc HAP= góc HAQ ( cm trên)

suy ra 2 tam giác bằng nhau theo TH cạnh huyền- góc nhọn

suy ra AP=AQ nên tam giác APQ cân tại A.

b. Do 2 tam giác APQ và ABC cùng cân tại A nên: \(\widehat{APQ}=\widehat{ABC}\left(=\frac{180^o-A}{2}\right)\)

mà 2 góc này ở vị trí đông vị nên PQ//BC.

c. gọi F là điểm đối xứng của E qua H. => HE=HF

suy ra 2 tam giác BEH và CFH bằng nhau (c.g.c) => BE=CF.

Từ a => HP=HQ

suy ra 2 tam giác HBP và HCQ bằng nhau theo TH (cạnh huyền- cạnh góc vuông).

=> BP=CQ.

xét tam giác CFQ có CF là cạnh huyền nên CF>CQ => BE> BP => đccm