Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔEAH có
AP là đường cao
AP là đường trung tuyến
Do đó: ΔEAH cân tại E
mà AB là đường cao
nên AB là phân giác của góc HAE(1)
Xét ΔHAF có
AQ là đường cao
AQ là đường trung tuyến
Do đó: ΔHAF cân tại A
mà AC là đường cao
nên AC là đường phân giác(2)
Từ (1) và (2) suy ra \(\widehat{EAF}=2\cdot90^0=180^0\)
hay E,A,F thẳng hàng
Hình vẽ
B H C P E A F Q
Bài làm
Câu a)
Có góc APH = 90 độ ( HP vuông góc với AB)
Mà góc APH + góc APE = 180 độ (kề bù)
Suy ra góc APE = APH = 90 độ
Xét tam giác APE và tam giác APH có
+ PE = PH (gt)
+ góc APE = góc APH = 90 độ (cmt)
+ AP là cạnh chung
Do đó tam giác APE = tam giác APH (c.g.c)
Có góc AQH + góc AQF = 180 độ (kề bù)
Suy ra góc AQH = góc AQF = 90 độ
Xét tam giác AQH và tam giác AQF có
+ QH = QF (gt)
+ góc AQH = góc AQF = 90 độ (cmt)
+ AQ là cạnh chung
Do đó tam giác AQH = tam giác AQF
Câu b)
Gợi ý: Để chứng minh E, A, F thẳng hàng cần phải chứng minh (cách đơn giản nhất) góc EAF là góc bẹt hay nói cách khác là góc EAF = 180 độ
Trong hình có
Vì tam giác AQF = tam giác AQH (cmt)
Nên góc QAF = góc QAH (hai góc tương ứng)
Vì tam giác APE = tam giác APH (cmt)
Nên góc PAE = góc PAH (hai góc tương ứng)
Mà góc PAQ = góc QAH + góc PAH = 90 độ ( AH nằm giữa AP và AQ)
Suy ra góc QAF + góc PAE = 90 độ
Mà góc EAF = góc EAP + góc BAC + góc QAF
Suy ra góc EAF = 90 độ + góc EAP + góc QAF
Suy ra góc EAF = 90 độ + 90 độ = 180 độ
Vậy E, A, F thẳng hàng
a: Xét ΔAPE vuông tại P và ΔAPH vuông tại P có
AP chung
PE=PH
Do đó: ΔAPE=ΔAPH
Suy ra: \(\widehat{EAP}=\widehat{HAP}\)
hay AB là phân giác của góc HAE(1)
Xét ΔAHQ vuông tại Q và ΔAFQ vuông tại Q có
AQ chung
HQ=FQ
Do đó: ΔAHQ=ΔAFQ
Suy ra: \(\widehat{HAQ}=\widehat{FAQ}\)
hay AC là tia phân giác của góc FAH(2)
b: Từ (1) và (2) suy ra \(\widehat{FAE}=2\cdot90^0=180^0\)
=>F,A,E thẳng hàng
a. Tam giác ABC cân tại A suy ra AH là đường cao cũng là đường phân giác góc A
\(\Rightarrow\widehat{HAP}=\widehat{HAQ}\)
xét 2 tam giác vuông AHP và AHQ có:
AH chung
góc HAP= góc HAQ ( cm trên)
suy ra 2 tam giác bằng nhau theo TH cạnh huyền- góc nhọn
suy ra AP=AQ nên tam giác APQ cân tại A.
b. Do 2 tam giác APQ và ABC cùng cân tại A nên: \(\widehat{APQ}=\widehat{ABC}\left(=\frac{180^o-A}{2}\right)\)
mà 2 góc này ở vị trí đông vị nên PQ//BC.
c. gọi F là điểm đối xứng của E qua H. => HE=HF
suy ra 2 tam giác BEH và CFH bằng nhau (c.g.c) => BE=CF.
Từ a => HP=HQ
suy ra 2 tam giác HBP và HCQ bằng nhau theo TH (cạnh huyền- cạnh góc vuông).
=> BP=CQ.
xét tam giác CFQ có CF là cạnh huyền nên CF>CQ => BE> BP => đccm