Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAPE vuông tại p và ΔAPh vuông tại P có
AP chung
PE=PH
DO đó: ΔAPE=ΔAPH
Xét ΔAQH vuông tại Q và ΔAQF vuông tại Q có
AQ chung
QH=QF
Do đó: ΔAQH=ΔAQF
b: Ta có: ΔAHP=ΔAEP
nen góc HAP=góc EAP
=>AB là phân giác của góc HAE(1)
Ta có: ΔAHQ=ΔAFQ
nen góc FAC=góc HAC
=>AC là phân giác của góc HAF(2)
Từ (1) và (2) suy ra góc FAE=2x90=180 độ
=>F,A,E thẳng hàng
mà AE=AF
nên A là trung điểm của FE
c: Xét ΔAHB và ΔAEB có
AH=AE
góc HAB=góc EAB
AB chung
Do đo: ΔAHB=ΔAEB
Suy ra: góc AEB=90 độ
=>BE vuông góc với EF(3)
Xét ΔCHA và ΔCFA có
CH=CF
AH=AF
CA chung
Do đó: ΔCHA=ΔCFA
Suy ra góc CFA=90 độ
=>CF vuông góc với FE(4)
Từ (3) và (4) suy ra BE//CF
a: Xét ΔAPE vuông tại p và ΔAPh vuông tại P có
AP chung
PE=PH
DO đó: ΔAPE=ΔAPH
Xét ΔAQH vuông tại Q và ΔAQF vuông tại Q có
AQ chung
QH=QF
Do đó: ΔAQH=ΔAQF
b: Ta có: ΔAHP=ΔAEP
nen góc HAP=góc EAP
=>AB là phân giác của góc HAE(1)
Ta có: ΔAHQ=ΔAFQ
nen góc FAC=góc HAC
=>AC là phân giác của góc HAF(2)
Từ (1) và (2) suy ra góc FAE=2x90=180 độ
=>F,A,E thẳng hàng
mà AE=AF
nên A là trung điểm của FE
=> Tam giác EAH cân tại A
Vì ΔAQH = ΔAQF ( cmt )
=> AH = AF ( hai cạnh t/ứng ) (2)
Từ (1) và (2) => EA = AF
=> A là trung điểm của EF
=> F,E,A thẳng hàng
a) Vì HP\(\perp\)AB
=> HPA = 90°
Mà PH = PE
=> PA là trung trực của EH
=> ∆EAH cân tại A
=> AE = AH
=> AEH = AHE
Xét ∆ vuông AEP và ∆ vuông AHP ta có
AE = AH
AP chung
=> ∆AEP = ∆AHP (ch-cgv)
Vì HQ\(\perp\)AC
=> HQA = 90°
Mà HQ = QF
=> AQ là trung trực HF
=> ∆AHF cân tại A
=> ∆AHQ = ∆FAQ (ch-cgv)
b) Vì ∆AHF cân tại A
=> AH = FA
Mà EA = AH
=> EA = AH = FA
=>AH = \(\frac{1}{2}\)FE
=> ∆EHF cân tại H
=> A \(\in\)FE
=> A là trung điểm FE
=> F,E,A thẳng hàng
=> Tam giác EAH cân tại A
Vì ΔAQH = ΔAQF ( cmt )
=> AH = AF ( hai cạnh t/ứng ) (2)
Từ (1) và (2) => EA = AF
=> A là trung điểm của EF
=> F,E,A thẳng hàng