K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BC=BD+CD=35cm

Xét ΔABC có AD là phân giác

nên AB/AC=BD/CD=3/4

Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC; AC^2=CH*BC

=>BH/CH=(AB/AC)^2=9/16

=>BH/9=CH/16

mà BH+CH=35

nên \(\dfrac{BH}{9}=\dfrac{CH}{16}=\dfrac{BH+CH}{9+16}=\dfrac{35}{25}=1.4\)

=>BH=12,6cm; CH=22,4cm

15 tháng 8 2023

hình như bị lỗi phần cuối ạ, b sửa lại bài đi

Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\)

\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{BH}{CH}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{9}{16}\)

\(\Leftrightarrow BH=\dfrac{9}{16}CH\)

Ta có: BH+CH=35

\(\Leftrightarrow CH\cdot\dfrac{25}{16}=35\)

\(\Leftrightarrow CH=22.4\left(cm\right)\)

\(\Leftrightarrow BH=\dfrac{9}{16}\cdot22.4=12.6\left(cm\right)\)

BC=15+20=35cm

BD/CD=3/4

=>AB/AC=3/4

BH/CH=(AB/AC)^2=9/16

=>BH/9=CH/16=35/25=1,4

=>BH=12,6cm; CH=22,4cm

Xét ΔABC có AD là đường phân giác

nên AB/AC=BD/CD=15/20=3/4

=>HB/HC=9/16

=>HB=9/16HC

Ta có: HB+HC=BC

=>9/16HC+HC=25

=>HC=16(cm)

=>HB=9(cm)

15 tháng 10 2021

Ta có \(BC=BD+CD=35\left(cm\right)\)

Vì AD là p/g nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}=\dfrac{15}{20}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}CD\)

Áp dụng PTG: \(BC^2=1225=AB^2+AC^2=\dfrac{9}{16}AC^2+AC^2=\dfrac{25}{16}AC^2\)

\(\Rightarrow AC^2=784\Rightarrow AC=28\left(cm\right)\\ \Rightarrow AB=\dfrac{3}{4}\cdot28=21\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=12,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=22,4\left(cm\right)\end{matrix}\right.\)

17 tháng 11 2015

tam giác ABC có AD phân giác nênAB/AC=BD/CD=15/20=3/4

BC=15+20=35

AB/AC=3/4=>AB2/AC2=9/16=>AB2/\(\left(AC^2+AB^2\right)=\)9/25

=>\(\frac{AB^2}{BC^2}=\frac{9}{25}\Rightarrow AB=\sqrt{35^2.\frac{9}{25}}=21\)

tam giác vuông ABC có AH là đường cao 

BH=\(\frac{AB^2}{BC}=12.6\)

tick nhaaaaaaaaaaaaaaaaaaa

30 tháng 7 2016

cho tam giác ABC vuông tại A. AB=15, AC=20, đg phân giác BD. 

a, Tính AD

b, Gọi H là hình chiếu của A trên BC. Tính AH, HB

c, Cm tam giác AID cân

21 tháng 11 2015

tớ làm được rùi . cảm ơn

Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{4}{5}\)

\(\Leftrightarrow AB=\dfrac{4}{5}AC\)

Ta có: BC=BD+CD

nên BC=4+5

hay BC=9cm

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{41}{25}=9\)

\(\Leftrightarrow AC^2=\dfrac{225}{41}\)

\(\Leftrightarrow AC=\dfrac{15\sqrt{41}}{41}\left(cm\right)\)

\(\Leftrightarrow AB=\dfrac{12\sqrt{41}}{41}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{16}{41}\left(cm\right)\\CH=\dfrac{353}{41}\left(cm\right)\\AH=\dfrac{4\sqrt{353}}{41}\left(cm\right)\end{matrix}\right.\)