Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{BH}{CH}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{9}{16}\)
\(\Leftrightarrow BH=\dfrac{9}{16}CH\)
Ta có: BH+CH=35
\(\Leftrightarrow CH\cdot\dfrac{25}{16}=35\)
\(\Leftrightarrow CH=22.4\left(cm\right)\)
\(\Leftrightarrow BH=\dfrac{9}{16}\cdot22.4=12.6\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
BC=15+20=35cm
BD/CD=3/4
=>AB/AC=3/4
BH/CH=(AB/AC)^2=9/16
=>BH/9=CH/16=35/25=1,4
=>BH=12,6cm; CH=22,4cm
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét ΔABC có AD là đường phân giác
nên AB/AC=BD/CD=15/20=3/4
=>HB/HC=9/16
=>HB=9/16HC
Ta có: HB+HC=BC
=>9/16HC+HC=25
=>HC=16(cm)
=>HB=9(cm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(BC=BD+CD=35\left(cm\right)\)
Vì AD là p/g nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}=\dfrac{15}{20}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}CD\)
Áp dụng PTG: \(BC^2=1225=AB^2+AC^2=\dfrac{9}{16}AC^2+AC^2=\dfrac{25}{16}AC^2\)
\(\Rightarrow AC^2=784\Rightarrow AC=28\left(cm\right)\\ \Rightarrow AB=\dfrac{3}{4}\cdot28=21\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=12,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=22,4\left(cm\right)\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
tam giác ABC có AD phân giác nênAB/AC=BD/CD=15/20=3/4
BC=15+20=35
AB/AC=3/4=>AB2/AC2=9/16=>AB2/\(\left(AC^2+AB^2\right)=\)9/25
=>\(\frac{AB^2}{BC^2}=\frac{9}{25}\Rightarrow AB=\sqrt{35^2.\frac{9}{25}}=21\)
tam giác vuông ABC có AH là đường cao
BH=\(\frac{AB^2}{BC}=12.6\)
tick nhaaaaaaaaaaaaaaaaaaa
cho tam giác ABC vuông tại A. AB=15, AC=20, đg phân giác BD.
a, Tính AD
b, Gọi H là hình chiếu của A trên BC. Tính AH, HB
c, Cm tam giác AID cân
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{4}{5}\)
\(\Leftrightarrow AB=\dfrac{4}{5}AC\)
Ta có: BC=BD+CD
nên BC=4+5
hay BC=9cm
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{41}{25}=9\)
\(\Leftrightarrow AC^2=\dfrac{225}{41}\)
\(\Leftrightarrow AC=\dfrac{15\sqrt{41}}{41}\left(cm\right)\)
\(\Leftrightarrow AB=\dfrac{12\sqrt{41}}{41}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{16}{41}\left(cm\right)\\CH=\dfrac{353}{41}\left(cm\right)\\AH=\dfrac{4\sqrt{353}}{41}\left(cm\right)\end{matrix}\right.\)
BC=BD+CD=35cm
Xét ΔABC có AD là phân giác
nên AB/AC=BD/CD=3/4
Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC; AC^2=CH*BC
=>BH/CH=(AB/AC)^2=9/16
=>BH/9=CH/16
mà BH+CH=35
nên \(\dfrac{BH}{9}=\dfrac{CH}{16}=\dfrac{BH+CH}{9+16}=\dfrac{35}{25}=1.4\)
=>BH=12,6cm; CH=22,4cm
hình như bị lỗi phần cuối ạ, b sửa lại bài đi