Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C
Tổng của cạnh AB và AC là:
24 - 10 = 14 ( cm )
Ta có sơ đồ:
Cạnh AB:|-------|-------|-------| } 14 cm
Cạnh AC:|-------|-------|-------|-------|
Cạnh AB là:
14 : 7 x 3 = 6 ( cm )
Cạnh AC là:
14 - 6 = 8 ( cm )
Diện tích ABC là:
\(\frac{8\times6}{2}=24\)( cm2)
Đáp số: 24 cm2
A B C
Tổng độ dài hai cạnh AB và AC là:
\(AB+AC=24-10=14\left(cm\right)\)
Độ dài cạnh AB là:
\(AB=14:\left(3+4\right).3=6\left(cm\right)\)
Độ dài cạnh AC là:
\(AC=14-6=8\left(cm\right)\)
Diện tích tam giác ABC là:
\(S_{ABC}=\frac{\left(AB.AC\right)}{2}=\frac{6.8}{2}=24\left(cm^2\right)\)
Ta có: M= abc/ ab+bc+ca
<=> 1/M = ab+ bc+ ca/ abc= 1/a+ 1/b+ 1/c (1)
Do: ab/ a+2b= 2/5 nên a+2b/ ab= 5/2
<=> 1/b+ 2/a= 5/2 (2)
Tương tự: bc/ b+2c= 3/4 nên b+2c/ bc= 4/3
<=> 1/c+2/b=4/3 (3)
ac/c+2a=3/5 <=> c+2a/ac=5/3
<=> 1/a+2/c=5/3 (4)
Cộng tổng của (2), (3), (4) ta đc:
( 1/b+2/a) + (1/c+2/b)+(1/a+2/c)= 5/2+4/3+5/3
<=> 3/a+3/b+3/c=5/2+3
<=> 3 x (1/a+1/b+1/c)=11/2 (5)
Thay (1) vào (5), ta có: 3 x 1/M = 11/2
<=> 1/M=11/6 <=>M=6/11
Vậy giá trị biểu thức M=6/11
Gọi AH là cc tương ứng với BC
Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\)
Vẽ hình ra rồi tinh diện tích hình tam giác ABC và ABN;ABM . Dựa vào công thức tính diện tích hình tam giác rồi so sánh thôi mà. Dễ lắm nhưng mink ko có thời gian để làm bài này ấy cku
1) có B là trung điểm của AC => AB = BC = 4 cm
AB + BC = AC
hay 4 + 4 = AC
=> AC = 8 (cm)
2) có 2 = 4 : 2
hay BD = BC : 2
=> D là trung điểm của đoạn thẳng BC
3) có góc xBC + góc xBy = góc yBC
hay 30 0 + góc xBy = 600
=> góc xBy = 600 - 300
=> góc xBy = 300
a = 2;b= (-2);c= 3
Thay : a+b+c=2+(-2)+3
. =[2+(-2)]+3
=0+3=3
B)vì a và b là 2 số đối nhau nên ta có :
a =2;b= (-2) và là 2số đối nhau vì
|-2|=2
Xét ΔABC vuông tại A có
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)
\(\Leftrightarrow\dfrac{1}{100-AC^2}+\dfrac{1}{AC^2}=\dfrac{1}{16}\)
\(\Leftrightarrow\dfrac{AC^2+100-AC^2}{AC^2\left(100-AC^2\right)}=\dfrac{1}{16}\)
\(\Leftrightarrow100AC^2-AC^4=1600\)
\(\Leftrightarrow AC^4-100AC^2+1600=0\)
\(\Leftrightarrow AC^4-80AC^2-20AC^2+1600=0\)
\(\Leftrightarrow\left(AC^2-80\right)\left(AC^2-20\right)=0\)
=>\(AC=2\sqrt{5}\left(cm\right)\)
=>\(AB=4\sqrt{5}\left(cm\right)\)
=>AB/AC=2