K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2021

undefined

undefined

Lười đánh máy nên luyện chữ :))

NV
5 tháng 1 2021

Do trắc nghiệm nên ta chỉ cần xét trường hợp đặc biệt nhất: đường thẳng này đi qua B, khi đó M trùng B và N là trung điểm AC

\(\Rightarrow\overrightarrow{AM}.\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AB}.\overrightarrow{AC}\)

Đồng thời do \(\overrightarrow{MB}=\overrightarrow{0}\) và \(\overrightarrow{NC}=\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AC}\) nên đáp án D đúng

Câu 1: 

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)

NV
21 tháng 2 2021

\(BM=2MA\Rightarrow\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}\)\(AN=3NC\Rightarrow\overrightarrow{AN}=\dfrac{3}{4}\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\)

Do đó:

\(\overrightarrow{MN}.\overrightarrow{DN}=\left(\overrightarrow{MA}+\overrightarrow{AN}\right)\left(\overrightarrow{DA}+\overrightarrow{AN}\right)\)

\(=\left(-\dfrac{1}{3}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\right)\left(-\overrightarrow{AD}+\dfrac{3}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\right)\)

\(=\left(\dfrac{5}{12}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\right)\left(\dfrac{3}{4}\overrightarrow{AB}-\dfrac{1}{4}\overrightarrow{AD}\right)\)

\(=\dfrac{5}{16}AB^2-\dfrac{3}{16}AD^2=\dfrac{1}{8}AB^2=\dfrac{1}{8}\) (chú ý rằng \(\overrightarrow{AB}.\overrightarrow{AD}=0\) và \(AB=AD=1\))

NV
15 tháng 7 2021

Đặt \(AB=a\), qua N kẻ đường thẳng song song BC cắt AB và CD lần lượt tại P và Q

Theo Talet: \(\Rightarrow\dfrac{NQ}{AD}=\dfrac{CQ}{CD}=\dfrac{CN}{AC}=\dfrac{1}{4}\Rightarrow\left\{{}\begin{matrix}NQ=\dfrac{a}{4}\Rightarrow NP=\dfrac{3a}{4}\\CQ=BP=\dfrac{a}{4}\Rightarrow DQ=AP=\dfrac{3a}{4}\\\end{matrix}\right.\) 

Pitago tam giác ADM: \(DM^2=AM^2+AD^2=\dfrac{5a^2}{4}\)

Pitago tam giác MNP: \(MN^2=MP^2+PN^2=\dfrac{5a^2}{8}\)

Pitago tam giác DQN: \(DN^2=DQ^2+QN^2=\dfrac{5a^2}{8}\)

\(\Rightarrow\left\{{}\begin{matrix}MN=DN\\MN^2+DN^2=DM^2\end{matrix}\right.\) \(\Rightarrow\Delta DMN\) vuông cân tại N

Gọi I là trung điểm DM \(\Rightarrow IN\perp DM\)

Phương trình đường thẳng qua N và vuông góc DM có dạng:

\(0\left(x+\dfrac{3}{2}\right)+1\left(y-\dfrac{1}{2}\right)=0\Leftrightarrow y-\dfrac{1}{2}=0\)

Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}x-1=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\) \(\Rightarrow I\left(1;\dfrac{1}{2}\right)\)

\(\Rightarrow\overrightarrow{IN}=\left(-\dfrac{5}{2};0\right)\Rightarrow IN=\dfrac{5}{2}\)

\(\Rightarrow DI=IN=\dfrac{5}{2}\)

Do D thuộc x-1=0 nên tọa độ có dạng \(D\left(1;d\right)\) \(\Rightarrow\overrightarrow{ID}=\left(0;d-\dfrac{1}{2}\right)\)

\(\Rightarrow\left|d-\dfrac{1}{2}\right|=\dfrac{5}{2}\Rightarrow d=-2\)

\(\Rightarrow D\left(1;-2\right)\)

Từ đây dễ dàng xác định tọa độ các điểm còn lại.

Gọi K là giao điểm AC và DM, theo Talet: 

\(\dfrac{AK}{CK}=\dfrac{KM}{DK}=\dfrac{AM}{DC}=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}DK=\dfrac{2}{3}DM=\dfrac{4}{3}DI\\AK=\dfrac{1}{3}AC=\dfrac{4}{9}AN\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{DK}=\dfrac{4}{3}\overrightarrow{DI}\Rightarrow\) tọa độ K

\(\overrightarrow{AK}=\dfrac{4}{9}\overrightarrow{AN}\Rightarrow\) tọa độ A

Tọa độ D, tọa độ I \(\Rightarrow\) tọa độ M \(\Rightarrow\) tọa độ B

\(\Rightarrow\) Tọa độ C

NV
15 tháng 7 2021

undefined

vecto AN+vecto BP+vecto CM

=vecto AB+vecto BN+vecto BC+vecto CP+vecto CA+vecto AM

=vecto AB+1/3vecto BC+vecto BC+1/3vecto CA+vecto CA+1/3vecto AB

=4/3 vecto AB+4/3vecto BC+4/3vecto CA

=vecto 0

19 tháng 11 2023

a: CI+BI=CB

=>\(\dfrac{3}{2}BI+BI=CB\)

=>\(\dfrac{5}{2}BI=CB\)

=>\(BI=\dfrac{2}{5}BC\)

=>\(CI=\dfrac{3}{2}\cdot BI=\dfrac{3}{2}\cdot\dfrac{2}{5}CB=\dfrac{3}{5}CB\)

\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}\)

\(=\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\)

\(=\dfrac{3}{5}\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{AC}\)

JB=2/5JC mà J không nằm trong đoạn thẳng BC

nên B nằm giữa J và C

=>JB+BC=JC

=>\(BC+\dfrac{2}{5}JC=JC\)

=>\(BC=\dfrac{3}{5}JC\)

\(\dfrac{JB}{BC}=\dfrac{\dfrac{2}{5}JC}{\dfrac{3}{5}JC}=\dfrac{2}{5}:\dfrac{3}{5}=\dfrac{2}{3}\)

=>\(JB=\dfrac{2}{3}BC\)

\(\overrightarrow{AJ}=\overrightarrow{AB}+\overrightarrow{BJ}\)

\(=\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{BC}\)

\(=\overrightarrow{AB}-\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{BA}-\dfrac{2}{3}\overrightarrow{AC}=\dfrac{5}{3}\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AC}\)

b:

Gọi giao điểm của AG với BC là M

G là trọng tâm của ΔABC

nên AG cắt BC tại trung điểm M của BC

=>\(AG=\dfrac{2}{3}AM\)

Xét ΔABC có AM là trung tuyến

nên \(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

=>\(\overrightarrow{AG}=\dfrac{2}{3}\cdot\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)

Đặt \(\overrightarrow{AG}=x\cdot\overrightarrow{AI}+y\cdot\overrightarrow{AJ}\)

\(\overrightarrow{AG}=\dfrac{1}{3}\cdot\overrightarrow{AB}+\dfrac{1}{3}\cdot\overrightarrow{AC};\overrightarrow{AI}=\dfrac{3}{5}\cdot\overrightarrow{AB}+\dfrac{2}{5}\cdot\overrightarrow{AC};\overrightarrow{AJ}=\dfrac{5}{3}\overrightarrow{AB}-\dfrac{2}{3}\cdot\overrightarrow{AC}\)

Ta có hệ phương trình sau:

\(\left\{{}\begin{matrix}\dfrac{1}{3}=x\cdot\dfrac{3}{5}+y\cdot\dfrac{5}{3}\\\dfrac{1}{3}=x\cdot\dfrac{2}{5}+y\cdot\dfrac{-2}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\cdot\dfrac{3}{5}+y\cdot\dfrac{5}{3}=\dfrac{1}{3}\\x\cdot\dfrac{2}{5}+y\cdot\dfrac{-2}{3}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+25y=5\\6x-10y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}18x+50y=10\\18x-30y=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}80y=-5\\6x-10y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-\dfrac{1}{16}\\6x=10y+5=-\dfrac{5}{8}+5=\dfrac{35}{8}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-\dfrac{1}{16}\\x=\dfrac{35}{48}\end{matrix}\right.\)

Vậy: \(\overrightarrow{AG}=\dfrac{35}{48}\overrightarrow{AI}-\dfrac{1}{16}\overrightarrow{AJ}\)