Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)
\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+....+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{56}\right)\)
\(\left(1+1+1+....+1+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{6\times7}+\frac{1}{7\times8}\right)\)(Có 7 số 1)
\(7+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(7+1-\frac{1}{8}=\frac{63}{8}\)
Gợi ý 1 bài c) còn d) e) cũng làm như vậy nhé
Chúc bạn học tốt !!!
Bài 2 :
\(B=2014\cdot2020\)
\(B=\left(2017-3\right)\left(2017+3\right)\)
\(B=2017^2-3^2\)
\(B=2017^2-9< A=2017^2\)
Vậy \(B< A\)
\(B=2014.2020\)
\(B=\left(2017-3\right)\left(2017+3\right)\)
\(B=\left(2017-3\right).2017+\left(2017+3\right).3\)
\(B=2017^2-3.2017+2017.3+3^2\)
\(B=2017^2-3^2< 2017^2=A\)
Vậy A > B
_Hok tốt_
!!!
\(5^{2.x+1}=125\)
\(\Rightarrow5^{2x}.5=125\)
\(\Rightarrow5^{2x}=25\)
\(\Rightarrow25^x=25\)
\(\Rightarrow x=1\)
=>\(5^{2x}.5=125\)
=>\(5^{2x}=25\)
=> \(25^x=25\Rightarrow x=1\)
B=\(1+3^2+3^4+...+3^{100}\)
9B=\(3^2+3^4+...+3^{100}\)
9B-B=\(\left(3^2+3^4+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
8B=\(3^{102}-1\)
B=\(\left(3^{102}-1\right):8\)
C=\(1+5^3+5^6+...+5^{99}\)
125C=\(5^3+5^6+5^9+...+5^{102}\)
125C-C=\(\left(5^3+5^6+5^9+...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)
124C=\(5^{102}-1\)
C=\(\left(5^{102}-1\right):124\)
Bài 1:
a) 3500 = 3100.5 = (35)100 = 243100
5300 = 5100.3 = (53)100 = 125100
Vì 243100 > 125100 nên 3500 > 5300
b) Không thể biết, nếu n > 100 thì thừa lớn hơn, nếu n < 9 thì thừa bé hơn.
bài 2 câu b,:Cũng thế nhưng xét trực tiếp 3 số khác:
* Xét: p # 3
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số
Biết mỗi bài đó thôi
Ta có:
\(D=\left(1+1+...+1\right)+2\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\right)\)
\(D=99+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(D=99+2\left(1-\frac{1}{100}\right)\)
\(D=99+2\cdot\frac{99}{100}=99+\frac{99}{50}=\frac{5049}{50}\)