Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 13/6+5/8 : -3/4 - 7/12.4
= 13/6 + -5/6-7/3
=8/6-7/3
= -6/6
= -1
b, ( 73/5 - 21/3) + ( 4/3-43/5 )
= 73/5-21/3+4/3-43/5
=( 73/5-43/5)-(21/3-4/3)
= 6-17/3
=1/3
c, 7/5.4/9 +7/5: 9/16- 14/10.2/9
= 7/5.4/9 +7/5.16/9 - 14/45
=7/5.(4/9+16/9)-14/45
=7/5.20/9-14/45
= 140/45 - 14/45
= 126/45
Xong rùi nè! Nhưng bạn kiểm tra lại giùm nhé vì làm vào ban đêm nên hơi bất tiện
a) 4 + ( 5x + 2 ) : 3 = 58
( 5x + 2 ) : 3 = 58 - 4
( 5x + 2 ) : 3 = 54
( 5x + 2 ) = 54 . 3
( 5x + 2 ) = 162
5x = 162 - 2
5x = 160
x = 160 : 5
x = 32
a) x = 32.
b) x = 5.
c) a = -1;0;1. Riêng câu này thì mình chứ chắc đứng nha bạn.
a,\(\frac{7}{10}\cdot\frac{4}{9}+\frac{3}{10}\cdot\frac{4}{9}-1\frac{7}{9}\)
\(=\frac{14}{45}+\frac{2}{15}-\frac{16}{9}\)
\(=\frac{14}{45}+\frac{6}{45}-\frac{80}{45}\)
\(=\frac{-60}{45}=\frac{-4}{3}\)
b,\(\frac{-5}{6}+\frac{4}{9}\cdot\left(\frac{5}{4}-\frac{2}{3}\right)\cdot\left(-3\right)^2+\frac{5}{9}\cdot30\%\)
\(=\frac{-5}{6}+\frac{4}{9}\cdot\left(\frac{7}{12}\right)\cdot9+\frac{5}{9}\cdot\frac{3}{10}\)
\(=\frac{-5}{6}+\frac{7}{3}+\frac{1}{6}\)
\(=\frac{-5}{6}+\frac{14}{6}+\frac{1}{6}\)
=\(=\frac{10}{6}=\frac{5}{3}\)
a. \(\frac{1}{5}+\frac{3}{4}+\frac{1}{10}\)
= \(\frac{4}{20}+\frac{15}{20}+\frac{2}{20}\)
= \(\frac{21}{20}\)
b. \(\frac{5}{6}-\frac{1}{3}+\frac{1}{6}\)
= \(\frac{5}{6}-\frac{2}{6}+\frac{1}{6}\)
= \(\frac{4}{6}=\frac{2}{3}\)
c. \(\frac{3}{8}-\frac{10}{2}:\frac{4}{5}\)
= \(\frac{3}{8}-\frac{50}{8}\)
= \(\frac{-47}{8}\)
a) \(\frac{1}{5}+\frac{3}{4}+\frac{1}{10}\)
= \(\frac{4+15+2}{20}\)
= \(\frac{21}{20}\)
b) \(\frac{5}{6}-\frac{1}{3}+\frac{1}{6}\)
= \(\frac{5-2+1}{6}\)
= \(\frac{4}{6}\)
c) \(\frac{3}{8}-\frac{10}{2}:\frac{4}{5}\)
= \(\frac{3}{8}-\frac{25}{4}\)
= \(-\frac{47}{8}\)
B=\(1+3^2+3^4+...+3^{100}\)
9B=\(3^2+3^4+...+3^{100}\)
9B-B=\(\left(3^2+3^4+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
8B=\(3^{102}-1\)
B=\(\left(3^{102}-1\right):8\)
C=\(1+5^3+5^6+...+5^{99}\)
125C=\(5^3+5^6+5^9+...+5^{102}\)
125C-C=\(\left(5^3+5^6+5^9+...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)
124C=\(5^{102}-1\)
C=\(\left(5^{102}-1\right):124\)