Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tứ giác `DACM` có:
`DA` // `MC`
`DM` // `AC`
`=>` Tứ giác `DACM` là hình bình hành
`=> hat{D} = hat{C}; DA = MC`
Tương tự:
Tứ giác `AEMB` là hình bình hành có `hat{B} = hat{E}; AE = BM`
Ta có:
* `DE = DA + AE`
* `BC = BM + MC`
mà `DA = MC; AE = BM`
`=> DE = MC`
Xét tam giác `MDE` và tam giác `ACB` có:
`hat{B} = hat{E}`
` DE = MC`
`hat{D} = hat{C}`
`=>` tam giác `MDE =` tam giác `ACB` (góc - cạnh - góc)
a.Vì ΔABC cân tại A (gt)
=>ABC=ACB (2 góc ở đáy bằng nhau)
và AB=AC (2 cạnh bên bằng nhau)
Xét ΔABD và ΔACE có:
BD=CE (gt)
ABD=ACE (do ABC=ACB)
AB=AC (cmt)
=>ΔABD=ΔACE (c.g.c)
=>AD=AE (2 cạnh tương ứng)
=>ΔADE cân tại A
Xét tứ giác AEDF có AE//DF và AF//DE nên tứ giác AEDF là hình bình hành
do đó \(\hept{\begin{cases}AE=DF\\AF=DE\\\widehat{AED}=\widehat{DFA}\end{cases}\Rightarrow\Delta AED=\Delta DFA\left(c.g.c\right)}\)
cũng từ tứ giác AEDF là hình bình hành do đó \(\hept{\begin{cases}AE=DF\\AF=DE\\\widehat{EAF}=\widehat{FDE}\end{cases}\Rightarrow\Delta AEF=\Delta DFE\left(c.g.c\right)}\)
Câu hỏi của Hoàng Trang - Toán lớp 7 - Học toán với OnlineMath