Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Xét ΔABC có
D là trung điểm của AB
DE//BC
Do đó: E là trung điểm của AC
a) Vì \(AB\) // \(EF\left(gt\right)\)
=> \(\widehat{BDF}=\widehat{EFD}\) (vì 2 góc so le trong).
Vì \(DE\) // \(BC\left(gt\right)\)
=> \(\widehat{EDF}=\widehat{BFD}\) (vì 2 góc so le trong).
Xét 2 \(\Delta\) \(BDF\) và \(EFD\) có:
\(\widehat{BDF}=\widehat{EFD}\left(cmt\right)\)
Cạnh DF chung
\(\widehat{BFD}=\widehat{EDF}\left(cmt\right)\)
=> \(\Delta BDF=\Delta EFD\left(g-c-g\right)\)
=> \(BD=EF\) (2 cạnh tương ứng).
Mà \(AD=BD\) (vì D là trung điểm của \(AB\))
=> \(AD=EF.\)
b) Vì \(DE\) // \(BC\left(gt\right)\)
=> \(\widehat{ADE}=\widehat{DBF}\) (vì 2 góc so le trong) (1).
Vì \(AB\) // \(EF\left(gt\right)\)
=> \(\widehat{DBF}=\widehat{EFC}\) (vì 2 góc so le trong) (2).
Từ (1) và (2) => \(\widehat{ADE}=\widehat{EFC}.\)
Xét 2 \(\Delta\) \(ADE\) và \(EFC\) có:
\(AD=EF\left(cmt\right)\)
\(\widehat{ADE}=\widehat{EFC}\left(cmt\right)\)
\(\widehat{DAE}=\widehat{FEC}\) (2 góc đồng vị do \(EF\) // \(AD\))
=> \(\Delta ADE=\Delta EFC\left(g-c-g\right)\)
c) Theo câu b) ta có \(\Delta ADE=\Delta EFC.\)
=> \(AE=EC\) (2 cạnh tương ứng).
Chúc bạn học tốt!
Câu hỏi của Hoàng Trang - Toán lớp 7 - Học toán với OnlineMath
thêm 1 câu nữa
d)F là trung điểm của BC
giúp mình với mình cần gắp
Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng :
a) AD = EF
b) Tam giác ADE = Tam giác EFC= tam giác DBF
c) BC= 2 lần DE
bạn ơi AB cắt BC ở F chớ
AB cắt BC ở F mới đúng chớ