Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) 5x(x-2000)-x+2000=0
\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)
1/
a/ \(D=2x\left(10x^2-5x-2\right)-5x\left(4x^2-2x-1\right)\)
\(D=2x\left[10\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)\right]-5x\left[4\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\right]\)
\(D=20x\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)-20x\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\)
\(D=20x^3-10x^2-4x-20x^3+10x^2+5x\)
\(D=x\)
b/ Mình xin sửa lại đề:
Tính giá trị biểu thức \(E\left(x\right)=x^5-13x^4+13x^3-13x^2+13x+2012\)
Tại x = 12
\(E\left(x\right)=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x-1\right)x+2012\)
\(E\left(x\right)=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+2012\)
\(E\left(x\right)=2012-x\)
\(E\left(x\right)=2000\)
2/
a/ \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
<=> \(2x^2-10x-3x-2x^2=26\)
<=> \(-13x=26\)
<=> \(x=-2\)
b/ Bạn vui lòng coi lại đề.
3a/ Ta có \(D=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(D=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)
\(D=-10\)
Vậy giá trị của D không phụ thuộc vào x (đpcm)
a)\(6x^2+5x-6=0\)
\(\Leftrightarrow6x^2-4x+9x-6=0\)
\(\Leftrightarrow2x\left(3x-2\right)+3\left(3x-2\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+3=0\\3x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=\frac{2}{3}\end{array}\right.\)
b)\(6x^2-13x+6=0\)
\(\Leftrightarrow6x^2-4x-9x+6=0\)
\(\Leftrightarrow2x\left(3x-2\right)-3\left(3x-2\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-3=0\\3x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=\frac{2}{3}\end{array}\right.\)
c)\(10x^2-13x-3=0\)
\(\Leftrightarrow10x^2-15x+2x-3=0\)
\(\Leftrightarrow5x\left(2x-3\right)+\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-3=0\\5x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-\frac{1}{5}\end{array}\right.\)
d)\(20x^2+19x-3=0\)
\(\Delta=19^2-\left(-4\left(20.3\right)\right)=601\)
\(\Rightarrow x_{1,2}=\frac{-19\pm\sqrt{601}}{40}\)
e)\(3x^2-x+6=0\)
\(\Delta=\left(-1\right)^2-4\left(3.6\right)=-71< 0\)
Suy ra vô nghiệm
Câu 2 sai đề nhé
Phải là:(x-999)/99+(x-896)/101+(x-789/103)=6
\(a,x^4-16x^2+32x-16=0\)
\(\Leftrightarrow\left(x^4-16\right)-16x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^4+4\right)\left(x-2\right)\left(x+2\right)-16x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2-12x+8\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-2x^2+4x^2-8x-4x+8\right)=0\)\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-2\right)+4x\left(x-2\right)-4\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)\left(x^2+4x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2\left[\left(x+2\right)^2-8\right]=0\Rightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\\left(x+2\right)^2-8=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-2=0\\\left(x+2\right)^2=8\Rightarrow\left[{}\begin{matrix}x+2=\sqrt{8}\\x+2=-\sqrt{8}\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{8}-2\\x=-\sqrt{8}-2\end{matrix}\right.\)
a: \(=\dfrac{6x^2+9x+8x+12}{2x+3}=\dfrac{3x\left(2x+3\right)+4\left(2x+3\right)}{2x+3}\)
=3x+4
b: \(=\dfrac{5x^2-2x+15x-6}{5x-2}\)
\(=\dfrac{x\left(5x-2\right)+3\left(5x-2\right)}{5x-2}=x+3\)
c: \(=\dfrac{-8x^2+20x+2x-5-10}{2x-5}=-4x+1+\dfrac{-10}{2x-5}\)
d: \(=\dfrac{14x^2-35x+2x-5}{2x-5}=\dfrac{7x\left(2x-5\right)+\left(2x-5\right)}{2x-5}\)
=7x+1
e: \(=\dfrac{2x^3+x^2+6x^2+3x+12x+6}{2x+1}\)
\(=\dfrac{x^2\left(2x+1\right)+3x\left(2x+1\right)+6\left(2x+1\right)}{2x+1}=x^2+3x+6\)
f: \(=\dfrac{x^3-2x^2+6x^2-12x+x-2}{x-2}=x^2+6x+1\)
g: \(=\dfrac{12x^3+6x^2-4x^2-2x+6x+3}{2x+1}=6x^2-2x+3\)
a)1-6x2-x =0<=>-(6x2+x-1)=0<=>6x2+x-1=0
<=>(6x2+3x)-(2x+1)=0<=>3x(2x+1)-(2x+1)=0
<=>(3x-1)(2x+1)=0
=>3x-1=0 hoặc 2x+1=0=>x=\(\dfrac13\) hoặc x=-\(\dfrac12\)
Vậy S={\(\dfrac13\);-\(\dfrac12\)}
b)12x2+13x+3=0<=>12x2+9x+4x+3=0<=>(12x2+9x)+(4x+3)=0
<=>3x(4x+3)+(4x+3)=0<=>(3x+1)(4x+3)=0
=>3x+1=0 hoặc 4x+3=0 <=>x=-\(\dfrac13 \) hoặc x=-\(\dfrac34\)
Vậy S={-\(\dfrac13 \);-\(\dfrac34 \)}
c)x3-11x2+30x=0<=>x(x2-11x+30)=0<=>x[(x2-6x)-(5x-30)]=0
<=>x[x(x-6)-5(x-6)]=0<=>x(x-5)(x-6)=0
=>x=0 hoặc x-5=0 hoặc x-6=0=>x=0 hoặc x=5 hoặc x=6
Vậy S={0;5;6}
d)Ta có:(x2+x+1)(x2+x+2)-12=0
Đặt:t=x2+x+1
Khi đó:a(a+1)-12=0<=>a2+a-12=0<=>(a2+4a)-(3a+12)=0
<=>a(a+4)-3(a+4)=0<=>(a-3)(a+4)=0
hay (x2+x-2)(x2+x+5)=0
<=>(x-1)(x+2)(x2+x+5)=0(x2+x-2=(x-1)(x+2))
=>x-1=0 hoặc x+2=0(vì x2+x+5=(x+\(\dfrac12\))2+\(\dfrac{19}{4}\)>0)
=>x=1 hoặc x=-2
Vậy S={1;-2}
e)Ta có:2x2+x+6>x2+x+6=(x+\(\dfrac12\))2+\(\dfrac{23}{4}\)>0
nên PT vô nghiệm
Vậy S=\(\varnothing\)
x = 3 ; -0,5 ; -2
x=3 , -0,5 , -2