
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) 2x - 5 = 3 + 2x - 7x
=> 2x - 2x + 7x = 3 +5
=> 7x = 8
=> x = 8/7
b) \(\left(2x-1\right)^2=\left(2x-1\right)^5\)
=> \(\left(2x-1\right)^2-\left(2x-1\right)^5=0\)
=> \(\left(2x-1\right)^2\left[1-\left(2x-1\right)^3\right]=0\)
=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\1-\left(2x-1\right)^3=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x-1=0\\\left(2x-1\right)^3=1\end{cases}}\)
=> \(\orbr{\begin{cases}2x=1\\2x-1=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\2x=2\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}\)

Một xe đạp đi từ A đến B với vận tốc 15km/giờ. Trên quãng đường từ B về vận tốc tăng thêm 5km/ giờ nên thời gian về ngắn hơn thời gian đi là 30 phút. Tính quãng đường AB?

a: Ta có: \(3\left|2x+5\right|\ge0\forall x\)
\(\Leftrightarrow3\left|2x+5\right|-7\ge-7\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{5}{2}\)
c: ta có: \(\left(2x-3\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(2x-3\right)^2-14\ge-14\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)

`C(x)=`\(5-8x^4+2x^3+x+5x^4+x^2-4x^3\)
`C(x)= (-8x^4+5x^4)+(2x^3-4x^3)+x^2+x+5`
`C(x)= -3x^4-2x^3+x^2+x+5`
`D(x)=`\(\left(3x^5+x^4-4x\right)-\left(4x^3-7+2x^4+3x^5\right)\)
`D(x)= 3x^5+x^4-4x-4x^3+7-2x^4-3x^5`
`D(x)=(3x^5-3x^5)+(x^4-2x^4)-4x^3-4x+7`
`D(x)=-x^4-4x^3-4x+7`
`P(x)=C(x)+D(x)`
`P(x)=( -3x^4-2x^3+x^2+x+5)+(-x^4-4x^3-4x+7)`
`P(x)=-3x^4-2x^3+x^2+x+5-x^4-4x^3-4x+7`
`P(x)=(-3x^4-x^4)+(-2x^3-4x^3)+x^2+(x-4x)+(5+7)`
`P(x)=-4x^4-6x^3+x^2-3x+12`
`Q(x)=C(x)-D(x)`
`Q(x)=( -3x^4-2x^3+x^2+x+5)-(-x^4-4x^3-4x+7)`
`Q(x)=-3x^4-2x^3+x^2+x+5+x^4+4x^3+4x-7`
`Q(x)=(-3x^4+x^4)+(-2x^3+4x^3)+x^2+(x+4x)+(5-7)`
`Q(x)=-2x^4+2x^3+x^2+5x-2`
`F(x)=Q(x)-(-2x^4+2x^3+x^2-12)`
`F(x)=(-2x^4+2x^3+x^2+5x-2)-(-2x^4+2x^3+x^2-12)`
`F(x)=-2x^4+2x^3+x^2+5x-2+2x^4-2x^3-x^2+12`
`F(x)=(-2x^4+2x^4)+(2x^3-2x^3)+(x^2-x^2)+5x+(-2+12)`
`F(x)=5x+10`
Đặt `5x+10=0`
`\Leftrightarrow 5x=0-10`
`\Leftrightarrow 5x=-10`
`\Leftrightarrow x=-10 \div 5`
`\Leftrightarrow x=-2`
Vậy, nghiệm của đa thức là `x=-2.`

c) l x - 5 l = 2x
\(\Leftrightarrow\orbr{\begin{cases}x-5=2x\\x-5=-2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2x=5\\x+2x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=5\\3x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}\)
Hok tốt!!!!!!!
Tìm x, biết:
a) |2x + 1| = 17
<=>\(\orbr{\begin{cases}2x+1=17\\2x+1=-17\end{cases}}\)
<=>\(\orbr{\begin{cases}2x=16\\2x=-18\end{cases}}\)
<=> \(\hept{\begin{cases}x=8\\x=-9\end{cases}}\)

\(\left|2x-1\right|+\left|2x-3\right|=\left|2x-1\right|+\left|3-2x\right|\)
\(\Rightarrow A=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|\)
\(\Rightarrow A=\left|2x-1\right|+\left|3-2x\right|\ge\left|2\right|=2\)
dấu "="xảy ra khi \(\left(2x-1\right).\left(3-2x\right)\ge0\)
\(\Rightarrow\frac{1}{2}\le x\le\frac{3}{2}\)
vậy min A=2 khi \(\frac{1}{2}\le x\le\frac{3}{2}\)
2x + 3 = 5
=> 2x = 2
=> x = 1
giải
th1
2x+3=5
2x =2
x = 1
th2
2x+3=-5
2x =-5 -3
2x = -8
x = -4