K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2022

A=a2sin⁡90∘+b2cos⁡90∘+c2cos⁡180∘

 0 

 

B=3−sin2⁡90∘+2cos2⁡60∘−3tan2⁡45∘.

= 3 - 1 + 1/2 - 3 = -1/2

undefined

23 tháng 3 2022

What did you see at the zoo?

 I saw crocodiles.

27 tháng 10 2023

a: loading...

b: \(B=3-sin^290^0+2\cdot cos^260^0-3\cdot tan^245^0\)

\(=3-1+2\cdot\left(\dfrac{1}{2}\right)^2-3\cdot1^2\)

\(=2-3+2\cdot\dfrac{1}{4}=-1+\dfrac{1}{2}=-\dfrac{1}{2}\)

c: \(C=sin^245^0-2\cdot sin^250^0+3\cdot cos^245^0-2\cdot sin^240^0+4\cdot tan55\cdot tan35\)

\(=\left(\dfrac{\sqrt{2}}{2}\right)^2+3\cdot\left(\dfrac{\sqrt{2}}{2}\right)^2-2\cdot\left(sin^250^0+sin^240^0\right)+4\)

\(=\dfrac{1}{2}+3\cdot\dfrac{1}{2}-2+4\)

\(=2-2+4=4\)

NV
21 tháng 4 2019

Toàn góc quen thuộc, cứ ném vào máy tính cho nó xử thôi:

\(P=\frac{\sqrt{3}.\frac{\sqrt{3}}{3}-\frac{1}{2}.\sqrt{3}-2\sqrt{2}.\frac{\sqrt{2}}{2}}{\sqrt{6}.1.\frac{\sqrt{2}}{2}.\frac{\sqrt{3}}{2}}=-\frac{2+\sqrt{3}}{3}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(M = \sin {45^o}.\cos {45^o} + \sin {30^o}\)

Ta có: \(\left\{ \begin{array}{l}\sin {45^o} = \cos {45^o} = \frac{{\sqrt 2 }}{2};\;\\\sin {30^o} = \frac{1}{2}\end{array} \right.\)

Thay vào M, ta được: \(M = \frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} + \frac{1}{2} = \frac{2}{4} + \frac{1}{2} = 1\)

b) \(N = \sin {60^o}.\cos {30^o} + \frac{1}{2}.\sin {45^o}.\cos {45^o}\)

Ta có: \(\sin {60^o} = \frac{{\sqrt 3 }}{2};\;\;\cos {30^o} = \frac{{\sqrt 3 }}{2};\;\sin {45^o} = \frac{{\sqrt 2 }}{2};\, \cos {45^o}= \frac{{\sqrt 2 }}{2}\)

Thay vào N, ta được: \(N = \frac{{\sqrt 3 }}{2}.\frac{{\sqrt 3 }}{2} + \frac{1}{2}.\frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} = \frac{3}{4} + \frac{1}{4} = 1\)

c) \(P = 1 + {\tan ^2}{60^o}\)

Ta có: \(\tan {60^o} = \sqrt 3 \)

Thay vào P, ta được: \(Q = 1 + {\left( {\sqrt 3 } \right)^2} = 4.\)

d) \(Q = \frac{1}{{{{\sin }^2}{{120}^o}}} - {\cot ^2}{120^o}.\)

Ta có: \(\sin {120^o} = \frac{{\sqrt 3 }}{2};\;\;\cot {120^o} = \frac{{ - 1}}{{\sqrt 3 }}\)

Thay vào P, ta được: \(Q = \frac{1}{{{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}} - \;{\left( {\frac{{ - 1}}{{\sqrt 3 }}} \right)^2} = \frac{1}{{\frac{3}{4}}} - \;\frac{1}{3} = \;\frac{4}{3} - \;\frac{1}{3} = 1.\)

23 tháng 3 2022

a) Ta có: \(sin^2x+sin^2\left(90-x\right)=sin^2x+cos^2x=1.\)

áp dụng: A = 2

b)Ta có: \(cos\left(x\right)=-cos\left(180-x\right)\)

áp dụng: B = 0

c) Ta có: \(tan\left(x\right)\cdot tan\left(90-x\right)=\frac{sinx}{cosx}\cdot\frac{sin\left(90-x\right)}{cos\left(90-x\right)}=\frac{sinx}{cosx}\cdot\frac{cosx}{sinx}=1\)

áp dụng: C = 1

27 tháng 3 2022

quá sai

18 tháng 7 2022

a) Ta có A=\dfrac{\tan \alpha+3 \dfrac{1}{\tan \alpha}}{\tan \alpha+\dfrac{1}{\tan \alpha}}=\dfrac{\tan ^{2} \alpha+3}{\tan ^{2} \alpha+1}=\dfrac{\dfrac{1}{\cos ^{2} \alpha}+2}{\dfrac{1}{\cos ^{2} \alpha}}=1+2 \cos ^{2} \alpha Suy ra A=1+2 \cdot \dfrac{9}{16}=\dfrac{17}{8}.

b) B=\dfrac{\dfrac{\sin \alpha}{\cos ^{3} \alpha}-\dfrac{\cos \alpha}{\cos ^{3} \alpha}}{\dfrac{\sin ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{3 \cos ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{2 \sin \alpha}{\cos ^{3} \alpha}}=\dfrac{\tan \alpha\left(\tan ^{2} \alpha+1\right)-\left(\tan ^{2} \alpha+1\right)}{\tan ^{3} \alpha+3+2 \tan \alpha\left(\tan ^{2} \alpha+1\right)}.

Suy ra B=\dfrac{\sqrt{2}(2+1)-(2+1)}{2 \sqrt{2}+3+2 \sqrt{2}(2+1)}=\dfrac{3(\sqrt{2}-1)}{3+8 \sqrt{2}}.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

Đặt  \(A = \left( {2\sin {{30}^o} + \cos {{135}^o} - 3\tan {{150}^o}} \right).\left( {\cos {{180}^o} - \cot {{60}^o}} \right)\)

Ta có: \(\left\{ \begin{array}{l}\cos {135^o} =  - \cos {45^o};\cos {180^o} =  - \cos {0^o}\\\tan {150^o} =  - \tan {30^o}\end{array} \right.\)

\( \Rightarrow A = \left( {2\sin {{30}^o} - \cos {{45}^o} + 3\tan {{30}^o}} \right).\left( { - \cos {0^o} - \cot {{60}^o}} \right)\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\left\{ \begin{array}{l}\sin {30^o} = \frac{1}{2};\tan {30^o} = \frac{{\sqrt 3 }}{3}\\\cos {45^o} = \frac{{\sqrt 2 }}{2};\cos {0^o} = 1;\cot {60^o} = \frac{{\sqrt 3 }}{3}\end{array} \right.\)

\( \Rightarrow A = \left( {2.\frac{1}{2} - \frac{{\sqrt 2 }}{2} + 3.\frac{{\sqrt 3 }}{3}} \right).\left( { - 1 - \frac{{\sqrt 3 }}{3}} \right)\)

\(\begin{array}{l} \Leftrightarrow A =  - \left( {1 - \frac{{\sqrt 2 }}{2} + \sqrt 3 } \right).\left( {1 + \frac{{\sqrt 3 }}{3}} \right)\\ \Leftrightarrow A =  - \frac{{2 - \sqrt 2  + 2\sqrt 3 }}{2}.\frac{{3 + \sqrt 3 }}{3}\\ \Leftrightarrow A =  - \frac{{\left( {2 - \sqrt 2  + 2\sqrt 3 } \right)\left( {3 + \sqrt 3 } \right)}}{6}\\ \Leftrightarrow A =  - \frac{{6 + 2\sqrt 3  - 3\sqrt 2  - \sqrt 6  + 6\sqrt 3  + 6}}{6}\\ \Leftrightarrow A =  - \frac{{12 + 8\sqrt 3  - 3\sqrt 2  - \sqrt 6 }}{6}.\end{array}\)

b)

Đặt  \(B = {\sin ^2}{90^o} + {\cos ^2}{120^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{135^o}\)

Ta có: \(\left\{ \begin{array}{l}\cos {120^o} =  - \cos {60^o}\\\cot {135^o} =  - \cot {45^o}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\cos ^2}{120^o} = {\cos ^2}{60^o}\\{\cot ^2}{135^o} = {\cot ^2}{45^o}\end{array} \right.\)

\( \Rightarrow B = {\sin ^2}{90^o} + {\cos ^2}{60^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{45^o}\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\left\{ \begin{array}{l}\cos {0^o} = 1;\;\;\cot {45^o} = 1;\;\;\cos {60^o} = \frac{1}{2}\\\tan {60^o} = \sqrt 3 ;\;\;\sin {90^o} = 1\end{array} \right.\)

\( \Rightarrow B = {1^2} + {\left( {\frac{1}{2}} \right)^2} + {1^2} - {\left( {\sqrt 3 } \right)^2} + {1^2}\)

\( \Leftrightarrow B = 1 + \frac{1}{4} + 1 - 3 + 1 = \frac{1}{4}.\)

c

Đặt  \(C = \cos {60^o}.\sin {30^o} + {\cos ^2}{30^o}\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\sin {30^o} = \frac{1}{2};\;\;\cos {30^o} = \frac{{\sqrt 3 }}{2};\;\cos {60^o} = \frac{1}{2}\;\)

\( \Rightarrow C = \frac{1}{2}.\frac{1}{2} + {\left( {\;\frac{{\sqrt 3 }}{2}} \right)^2} = \frac{1}{4} + \frac{3}{4} = 1.\)

NV
27 tháng 11 2019

Do \(90< a< 180\Rightarrow cosa< 0\Rightarrow tana< 0\Rightarrow\) đề bài sai do tana không thể bằng 3

Nhưng kệ cứ tính thì:

Chia cả tử và mẫu của A cho \(cos^3a\) và lưu ý \(\frac{1}{cos^2a}=1+tan^2a\)

\(A=\frac{tana.\frac{1}{cos^2a}+tan^2a+1}{tan^3a-tana-1}=\frac{tana\left(1+tan^2a\right)+tan^2a+1}{tan^3a-tana-1}\)

Tới đây thay số vào và bấm máy là xong

NV
27 tháng 3 2019

Giả sử các biểu thức đều xác định

a/

\(sinx.cotx+cosx.tanx=sinx.\frac{cosx}{sinx}+cosx.\frac{sinx}{cosx}=sinx+cosx\)

b/

\(\left(1+cosx\right)\left(sin^2x+cos^2x-cosx\right)=\left(1+cosx\right)\left(1-cosx\right)=1-cos^2x=sin^2x\)

c/

\(\frac{sinx+cosx}{cos^3x}=\frac{1}{cos^2x}\left(\frac{sinx+cosx}{cosx}\right)=\left(1+tan^2x\right)\left(tanx+1\right)=tan^3x+tan^2x+tanx+1\)

d/

\(tan^2x-sin^2x=\frac{sin^2x}{cos^2x}-sin^2x=sin^2x\left(\frac{1}{cos^2x}-1\right)\)

\(=sin^2x\left(\frac{1-cos^2x}{cos^2x}\right)=sin^2x.\frac{sin^2x}{cos^2x}=sin^2x.tan^2x\)

e/ \(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=cos^2x\left(\frac{1-sin^2x}{sin^2x}\right)\)

\(=cos^2x.\frac{cos^2x}{sin^2x}=cos^2x.cot^2x\)