Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(A=\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+\frac{x}{3\sqrt{x}-x}\right):\frac{\sqrt{x}+3}{x-9}\)
\(=\left(\frac{2x}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{x}{\sqrt{x}\left(\sqrt{x}-3\right)}\right):\frac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x}{\sqrt{x}\left(\sqrt{x}-3\right)}:\frac{1}{\sqrt{x}-3}\)
\(=\frac{x\cdot\left(\sqrt{x}-3\right)}{\sqrt{x}\cdot\left(\sqrt{x}-3\right)}\)
\(=\sqrt{x}\)
-1 miếng đất giá 4,000,000,000₫.
-Trích 1 phần để gửi tiết kiệm,
-Chia cho các anh chị.
-Lãi hàng tháng 5,000,000,000₫. Biết lãi suất ngân hàng là 6%/năm
What do you mean ???
a) Sửa đề: C/m tứ giác BEHC nội tiếp
Xét tứ giác BEHC có
\(\widehat{BEC}=\widehat{BHC}\left(=90^0\right)\)
\(\widehat{BEC}\) và \(\widehat{BHC}\) là hai góc cùng nhìn cạnh BC
Do đó: BEHC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Gọi OD ⊥ AC tại I ( I thuộc OD)
Có: OD⊥ AC (gt) và CB⊥ AC ( △ABC vuông tại C)
Do đó OD // CB
Xét △ABC, có:
OD// CB (cmt)
O là trung điểm AB ( AB là đường kính)
Do đó OI là đường trung bình ABC
=>I là trung điểm AC
Có: OD ⊥ AC(gt) , I trung điểm AC (cmt) (I thuộc OD)
Nên OD là đường trung trực của AC
c)
Xét t/giác AOC, có:
AO=OC (=R)
Do đó t/giác AOC cân tại O
Mà OI ⊥ AC
Nên OI cũng là đường phân giác góc AOC
=> AOI = COI
Xét t/giác ADO và t/giác DOC, có:
OD chung
AOI = COI (cmt)
OA=OC (=R)
Do đó t/giác ADO = t/giác CDO (c-g-c)
=> DAO = DCO
Mà DAO= 90
Nên DCO = 90
Có C thuộc (O) ( dây cung BC)
Nên CD là tiếp tuyến
Lời giải:
Gọi vận tốc ca nô là x(km/h), x>3. Vận tốc ca nô xuôi dòng là x+3 (km/h)
Thời gian ca nô xuôi dòng từ A đến B là 40x+3 (giờ)
Vận tốc ca nô ngược dòng là x−3 (km/h)
Quãng đường ca nô ngược dòng từ B đến địa điểm gặp bè là : 40−8=32 km
Thời gian ca nô ngược dòng từ B đến địa điểm gặp bè là: 32x−3 (giờ)
Ta có phương trình: 40x+3+32x−3=83⇔5x+3+4x−3=13 ⇔15(x−3)+12(x+3)=x2−9
⇔x2=27x⇔[x=27x=0
So sánh với điều kiện thì chỉ có nghiệm x=27 thỏa mãn, suy ra vận tốc của ca nô là 27km/h
Pt hoành độ giao điểm:
\(x^2-mx+m-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-m+1\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=m-1\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\) \(\Rightarrow m-1=5.1\Rightarrow m=6\)
TH2: \(\left\{{}\begin{matrix}x_1=m-1\\x_2=1\end{matrix}\right.\) \(\Rightarrow1=5\left(m-1\right)\Rightarrow m=\dfrac{2}{5}\)
II.2.
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow\sqrt{x}\left(x-\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}+1=0\left(vô-nghiệm\right)\\\sqrt{x}-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Ta có:
\(\dfrac{1}{x+\sqrt{x}}-\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\\ =\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}\)
Vậy \(A=\left(\dfrac{1}{x+\sqrt{x}}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}\\ =\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}\\ =\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\\ =\dfrac{-(\sqrt{x}-1)}{\sqrt{x}\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\\ =\dfrac{-\left(\sqrt{x}+1\right)}{\sqrt{x}}=-1-\dfrac{1}{\sqrt{x}}\)
b.
\(x=\dfrac{1}{4}\) \(\Rightarrow A=-1-\dfrac{1}{\sqrt{\dfrac{1}{4}}}=-1-\dfrac{1}{\dfrac{1}{2}}=-3\)
c. Từ câu b ta có A= -3 khi x = 1/4