K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(=\left[\left(\sqrt{2}+\sqrt{3}\right)^2-5\right]\cdot\left[\left(\sqrt{5}\right)^2-\left(\sqrt{2}-\sqrt{3}\right)^2\right]\)

\(=2\sqrt{6}\left(5-5+2\sqrt{6}\right)=2\sqrt{6}\cdot2\sqrt{6}=24\)

2: \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

=>\(A^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{16-10-2\sqrt{5}}\)

\(=8+2\cdot\sqrt{6-2\sqrt{5}}\)

\(=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}\)

=>\(A=\sqrt{5}+1\)

4:

a: cos^2a=1-(1/2)^2=1-1/4=3/4

=>\(cosa=\dfrac{\sqrt{3}}{2}\)

\(tana=\dfrac{1}{2}:\dfrac{\sqrt{3}}{2}=\dfrac{1}{\sqrt{3}}\)

\(cota=1:\dfrac{1}{\sqrt{3}}=\sqrt{3}\)

b: sin^2a=1-(3/4)^2=1-9/16=7/16

=>\(sina=\dfrac{\sqrt{7}}{4}\)

\(tana=\dfrac{\sqrt{7}}{4}:\dfrac{3}{4}=\dfrac{\sqrt{7}}{3}\)

\(cota=1:\dfrac{\sqrt{7}}{3}=\dfrac{3}{\sqrt{7}}\)

16 tháng 2 2022

\(x^2+\sqrt{5}x-10=0\)

\(\Delta=5-4\left(-10\right)=45>0\)

Vậy pt có nghiệm pb 

\(x_1=\dfrac{-\sqrt{5}-3\sqrt{5}}{2}=-2\sqrt{5};x_2=\dfrac{-\sqrt{5}+3\sqrt{5}}{2}=\sqrt{5}\)

30 tháng 11 2023

ĐKXĐ: \(5x^2+2x-3>=0\)

=>\(5x^2+5x-3x-3>=0\)

=>\(\left(x+1\right)\left(5x-3\right)>=0\)

TH1: \(\left\{{}\begin{matrix}x+1>=0\\5x-3>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-1\\x>=\dfrac{3}{5}\end{matrix}\right.\)

=>\(x>=\dfrac{3}{5}\)

TH2: \(\left\{{}\begin{matrix}x+1< =0\\5x-3< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =-1\\x< =\dfrac{3}{5}\end{matrix}\right.\)

=>\(x< =-1\)

\(\left(x+1\right)\cdot\sqrt{5x^2+2x-3}=5x^2+4x-5\)

=>\(\left(x+1\right)\sqrt{5x^2+2x-3}=5x^2+2x-3+2x-2\)

=>\(\left(x+1\right)\sqrt{5x^2+2x-3}-\left(5x^2+2x-3\right)-\left(2x-2\right)=0\)

=>\(\sqrt{5x^2+2x-3}\left(x+1-\sqrt{5x^2+2x-3}\right)-2\left(x-1\right)=0\)

=>\(\sqrt{5x^2+2x-3}\cdot\dfrac{\left(x+1\right)^2-\left(5x^2+2x-3\right)}{x+1+\sqrt{5x^2+2x-3}}-2\left(x-1\right)=0\)

=>\(\sqrt{5x^2+2x-3}\cdot\dfrac{x^2+2x+1-5x^2-2x+3}{x+1+\sqrt{5x^2+2x-3}}-2\left(x-1\right)=0\)

=>\(\dfrac{\sqrt{5x^2+2x-3}}{x+1+\sqrt{5x^2-2x+3}}\cdot\left(-4x^2+4\right)-2\left(x-1\right)=0\)

=>\(\dfrac{2\sqrt{5x^2+2x-3}}{x+1+\sqrt{5x^2-2x+3}}\cdot\left(x^2-1\right)+\left(x-1\right)=0\)

=>\(\dfrac{2\sqrt{5x^2+2x-3}\cdot\left(x+1\right)\left(x-1\right)}{x+1+\sqrt{5x^2-2x+3}}+\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(\dfrac{2\sqrt{5x^2+2x-3}\cdot\left(x+1\right)}{x+1+\sqrt{5x^2-2x+3}}+1\right)=0\)

=>x-1=0

=>x=1(nhận)

27 tháng 6 2021

Với \(n\in N;n>0\) có:

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Áp dụng vào P có:
\(P=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2016}}-\dfrac{1}{\sqrt{2017}}\)

\(=1-\dfrac{1}{\sqrt{2017}}\)

\(\Rightarrow a^2+b=1^2+2017=2018\)

Ý A

18 tháng 10 2023

`a)\sqrt{16x+48}+\sqrt{x+3}=15`     `ĐK: x >= -3`

`<=>4\sqrt{x+3}+\sqrt{x+3}=15`

`<=>5\sqrt{x+3}=15`

`<=>\sqrt{x+3}=3`

`<=>x+3=9<=>x=6` (t/m).

`b)\sqrt{x^2-4}-3\sqrt{x-2}=0`     `ĐK: x >= 2`

`<=>\sqrt{x-2}(\sqrt{x+2}-3)=0`

`<=>[(\sqrt{x-2}=0),(\sqrt{x+2}=3):}`

`<=>[(x-2=0),(x+2=9):}<=>[(x=2(t//m)),(x=7(t//m)):}`

18 tháng 10 2023

tui c.ơn cậu nhiều lắmyeu

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Bạn gõ hẳn đề ra thì khả năng mọi người sẽ giúp bạn sẽ cao hơn nhé. Đọc như thế này hơi khó.

20 tháng 6 2021

A = \(\dfrac{4\sqrt{x}+9}{2\sqrt{x}+1}\)

Mà \(4\sqrt{x}+9>0\)

\(2\sqrt{x}+1>0\)

=> A > 0

A = \(\dfrac{2\left(2\sqrt{x}+1\right)+7}{2\sqrt{x}+1}\) = \(2+\dfrac{7}{2\sqrt{x}+1}\)

Mà \(2\sqrt{x}+1\ge1< =>\dfrac{7}{2\sqrt{x}+1}\le7\)

<=> \(A\le9\)

<=> 0 < A \(\le9\)

Mà A thuộc Z

<=> A \(\in\){1;2;3;4;5;6;7;8;9}

Đến đây bn thay A vào để tìm x nhé

20 tháng 6 2021

A = \(\dfrac{2\left(2\sqrt{x}+1\right)+7}{2\sqrt{x}+1}=2+\dfrac{7}{2\sqrt{x}+1}\)

Mà \(2\sqrt{x}+1>0< =>\dfrac{7}{2\sqrt{x}+1}>0\)

<=> A > 2

Có \(2\sqrt{x}+1\ge1< =>\dfrac{7}{2\sqrt{x}+1}\le7\)

<=> \(A\le9\)

<=> 2 < A \(\le9\)

Mà A thuộc Z

<=> \(A\in\left\{3;4;5;6;7;8;9\right\}\)

Đến đây bn thay A vào để tìm x nhé

23 tháng 6 2021

A = \(\dfrac{6\sqrt{x}+8}{3\sqrt{x}+2}=2+\dfrac{4}{3\sqrt{x}+2}\)

Có \(3\sqrt{x}+2>0< =>\dfrac{4}{3\sqrt{x}+2}>0\) <=> A > 2

Có: \(3\sqrt{x}+2\ge2< =>\dfrac{4}{3\sqrt{x}+2}\le2\) <=> A \(\le4\)

<=> 2 < A \(\le4\)

Mà A nguyên

<=> \(\left[{}\begin{matrix}A=3\\A=4\end{matrix}\right.\)

TH1: A = 3

<=> \(\dfrac{4}{3\sqrt{x}+2}=1\)

<=> \(3\sqrt{x}+2=4< =>x=\dfrac{4}{9}\)

TH2: A = 4

<=> \(\dfrac{4}{3\sqrt{x}+2}=2< =>3\sqrt{x}+2=2< =>x=0\)