Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
f(x)=x2−x−x+2
x là nghiệm của đa thức f(x)
x2−x−x+1+1=0
x.(x-1)-(x-1)+1=0
(x-1).(x-1)+1=0
(x-1)2+1=0
=>(x-1)2=-1 (vô lý)
Vậy đa thức f(x) không có nghiệm
Ta có : f(x) = x2 - x - x + 2 = x2 - x - x + 1 + 1
= x(x - 1) - (x- 1) +1
= (x - 1) 2 + 1 \(\ge\)1 > 0
Vậy f(x) vô nghiệm .
a>P(x)+Q(x)=(x4+2x3+2x2-x)+(x4-2x3+x+1)
=x4+2x3+2x2-x+x4-2x3+x+1
=(x4+x4)+(2x3 -2x3)+2x2-(x+x)+1
=2x 4+2x2+1
R(x)=2x4+2x2+1
b> Vì 2x4 lớn hơn hoặc bằng 0 với mọi x
2x2lớn hơn hoặc bằng 0 với mọi x
=>2x4+2x2+1 lớn hơn 0 với mọi x
=>R(x) vô nghiệm
nếu đ tik cho mk nha
Chọn C
Ta có
f(-3) = - (-3) - 3 = 0,
g(-3) = (-3)2 + 3 = 12,
h(-3) = (-3)2 - 9 = 0,
k(-3) = (-3)2-2.(-3) - 15 = 0
Nên x = -3 là nghiệm của f(x), g(x), k(x).
\(f\left(x\right)=x^2+1\ge1\)
=> Đa thức không có nghiệm
\(f\left(x\right)=x^2+2x+3\)
\(\Leftrightarrow x^2+2x+1+2\)
\(\Leftrightarrow\left(x+1\right)^2+2\)
Vì \(\left(x+1\right)^2\ge0\)=>\(\left(x+1\right)^2+2\ge2\)
Vậy PT ko có nghiệm
\(x^2+2x+3=0\)
\(\Rightarrow x^2+2x+1+2=0\)
\(\Rightarrow\left(x+1\right)^2+2=0\)( vô lý )
=> Đa thức vô nghiệm