Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi a=UCLN(n+1;2n+3)
\(\Leftrightarrow2n+3-2\left(n+1\right)⋮a\)
\(\Leftrightarrow1⋮a\)
=>a=1
=>n+1/2n+3 là phân số tối giản
b: Gọi d=UCLN(2n+5;4n+8)
\(\Leftrightarrow4n+10-4n-8⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+5 là số lẻ
nên n=1
=>2n+5/4n+8 là phân số tối giản
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
.
Không thể được đâu bạn ơi, giả sử như n = 2, thay vào phân số trên sẽ được kết quả là 8/9 >> không phải là phân số tối giản.
gọi ƯC( 3n+2 và 4n+1) là d
suy ra 3n+2 chia hết cho d và 4n+1 chia hết cho d
suy ra ( 3n+2) - ( 4n +1) chia hết cho d
4(3n+2) - 3(4n+1)chia hết d
12n+8- 12n-3 chia hết d
8-3 chia hết d
5 .............
Vì 3n+2vs 4n+1 là 2 số nguyên tố cung nhau
suy ra d=1
Vậy...............
\(4n+3⋮3n+2\)
\(12n+9⋮3n+2\)
\(4\left(3n+2\right)-3⋮3n-2\)
\(-3⋮3n+2\)hay \(3n+2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
dễ rồi tự làm nhé !
\(n-5⋮2n+3\)
\(2n-10⋮2n+3\)
\(2n+3-13⋮2n+3\)
\(-13⋮2n+3\)hay \(2n+3\inƯ\left(-13\right)=\left\{\pm1;\pm13\right\}\)
dễ rồi tự làm nhé !
\(A=\dfrac{2n^2+3n+1}{3n+2}\)
Gọi ước chung lớn nhất của \(2n^2+3n+1\) và \(3n+1\) là d \(\left(d\in N;d>0\right)\)
Suy ra
\(2n^2+3n+1⋮d\Rightarrow9\left(2n^2+3n+1\right)⋮d\\ \Leftrightarrow18n^2+27n+9⋮d\Leftrightarrow\left(18n^2+12n\right)+\left(15n+10\right)-1⋮d\\ \Leftrightarrow\left(3n+2\right)\left(9n+5\right)-1⋮d\)
Mà \(3n+2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\left(d>0;d\in N\right)\)
Suy ra phân số A tối giản.
Ta gọi UWCLN của 2n-1 và 4n+2 là d
Ta có 2n-1 chia het cho d vậy 4n-2 chia hết cho d
4n+2 chia hết cho d vậy 4n+2-4n-2 chia het cho d
Vậy 4 chia hết cho d nên d=1 để 2n-1/4n+2 là tối giản
Vậy 2n-1/4n+2 là tối giản