Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy
3 ; 8 là 2 số nguyên tố cùng nhau
Khi cộng vào 2n và 4n thì cũng sẽ có 2n và 4n không cùng chia hết cho bất cứ số nào nên UCLN là 1 .
Các số có ước chung lớn nhất là 1 thì là số nguyên tố .
Ta thấy
3 ; 8 là 2 số nguyên tố cùng nhau
Khi cộng vào 2n và 4n thì cũng sẽ có 2n và 4n không cùng chia hết cho bất cứ số nào nên UCLN là 1 .
Các số có ước chung lớn nhất là 1 thì là số nguyên tố .
a) Ta có : \(\frac{n+1}{2n+3}\)tối giản <=> ƯCLN(n+1;2n+3) \(\in\){1; -1}
Gọi d là ƯCLN(n+1; 2n+3)
=> n + 1 \(⋮\)d => 2(n + 1) \(⋮\) d => 2n + 2 \(⋮\) d
2n + 3 \(⋮\) d
=> (2n + 3) - (2n + 2) = 1 \(⋮\) d => d \(\in\){1; -1}
Vậy \(\frac{n+1}{2n+3}\)tối giản
gọi UCLN(n+1,2n+3)=đ (d thuộc N*)
Ta có:{n+1 chia hết cho d=>2n+2 chia hết cho d
{ 2n+3 chia hết cho d
Xét[(2n+3)-(2n+2)] chia hết cho d
=>1 chia hết cho d
=> d=1
=>UCLN(n+1,2n+3)=1
Vậy n+1/2n+3 là phân số tối giảm với mọi n
b,
gọi UCLN(2n+3,4n+8)=đ (d thuộc N*)
Ta có:{n+1 chia hết cho d=>2n+2 chia hết cho d
{ 2n+3 chia hết cho d
Xét[(2n+3)-(2n+2)] chia hết cho d
=>1 chia hết cho d
=> d=1
=>UCLN(n+1,2n+3)=1
Vậy n+1/2n+3 là phân số tối giảm với mọi n
Bài 1: Theo đề, ta có : a : 18 ( dư 12 ) ( a \(\in N\) )
\(\Rightarrow\) a : 2.9 ( dư 3+9 )
\(\Rightarrow\) a : 9 ( dư 3 )
Bài 2 : Theo đề, ta có : B = 6 + m + n + 12
B = ( m + n ) + ( 6 + 12 )
B = ( m + n ) + 18
Vì \(18⋮3\) nên khi ( m + n ) \(⋮\) 3 thì B \(⋮3\)
Ngược lại, khi ( m + n ) \(⋮̸\) 3 thì B \(⋮̸\) 3.
Bài 3:
Ta có : A = \(2+2^2+2^3+...+2^{49}+2^{50}\)
A = \(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{49}+2^{50}\right)\)
A = \(2\left(1+2\right)+2^3\left(1+2\right)+...+2^{49}\left(1+2\right)\)
A = \(2.3+2^3.3+...+2^{49}.3\)
A = \(3\left(2+2^3+...+2^{49}\right)\) \(⋮\) 3
Ta có : A = \(2+2^2+2^3+2^4+2^5+...+2^{49}+2^{50}\)
A = \(\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{46}+2^{47}+2^{48}+2^{49}+2^{50}\right)\)
A = \(2\left(1+2+2^2+2^3+2^4\right)+...+2^{46}\left(1+2+2^2+2^3+2^4\right)\)
A = 2 . 62 + ... + \(2^{46}.62\)
A = 62 ( 2 +...+ \(2^{46}\) )
A = 31 . 2( \(2+...+2^{46}\) ) \(⋮\) 31
Bài 4: Ta có : \(\overline{abcabc}\) = \(\overline{abc}000+\overline{abc}\) = \(\overline{abc}\left(1000+1\right)\) = \(\overline{abc}.1001\) = \(\overline{abc}.77.13\) \(⋮13\)
Vậy : \(\overline{abcabc}⋮13\)
Để mk làm bài 5 sau nha. Bây giờ đang bận
Bài 5:
a/ Ta có: \(n+5\) \(⋮\) n - 2 ( n \(\in\) N )
\(\Rightarrow\) n - 2 +7 \(⋮\) n - 2
\(\Rightarrow\) 7 \(⋮\) n - 2
\(\Rightarrow\) n - 2 \(\in\) Ư(7) = { 1 ; 7 }
\(\Rightarrow n\in\left\{3;9\right\}\)
b/ Ta có : 2n + 7 \(⋮\) n + 1 ( n \(\in\) N )
\(\Rightarrow\) 2( n + 1 ) + 5 \(⋮\) n + 1
\(\Rightarrow\) 5 \(⋮\) n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư (5) = { 1 ; 5 }
\(\Rightarrow\) n \(\in\) { 0 ; 4 }
Chúc bn hc tốt!!!
Gọi UCLN(n+1,2n+3) = d
=> n + 1 chia hết cho d => 2(n + 1) chia hết cho d => 2n + 2 chia hết cho d
2n + 3 chia hết cho d
=> 2n + 3 - (2n + 2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> UCLN(n+1,2n+3) = 1
Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản
Gọi UCLN(2n+1,2n+3) = d
=> 2n+1 chia hết cho d
2n+3 chia hết cho d
=> 2n+3 - (2n+1) chia hết cho d
=> 2 chia hết cho d
=> d \(\in\){1;2}
Vì 2n+1 lẻ nên d = 1
=>UCLN(2n+1,2n+3) = 1
Vậy \(\frac{2n+1}{2n+3}\) là phân số tối giản
Gọi d = ƯCLN ( 2n + 1 ; 2n + 3 ) ( d thuộc \(ℕ^∗\))
=> 2n + 1 chia hết cho d ; 2n + 3 chia hết cho d
=> ( 2n + 3 ) - ( 2n + 1 ) chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 2 chia hết cho d
Mà 2n +1 là số lẻ => d là số lẻ => d = 1
=> ƯCLN ( 2n + 1 ; 2n + 3 ) = 1
Chứng tỏ ........
bn lac de rui bn oi