Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm tự luận nha các ban! Thời hạn là trước 7h nha vì 7h30 mi địch học rủi.
a: \(\Leftrightarrow n+2\in\left\{1;-1;2;-2;3;-3;6;-6;9;-9;18;-18\right\}\)
hay \(n\in\left\{-1;-3;0;-4;1;-5;4;-8;7;-11;16;-20\right\}\)
a) – 13 là bội của n – 2
=>n−2∈Ư (−13)={1; −1;13; −13}
=> n∈{3;1;15; −11}
Vậy n∈{3;1;15; −11}.
b) 3n + 2 ⋮2n−1 => 2(3n + 2) ⋮2n−1 => 6n + 4 ⋮2n−1 (1)
Mà 2n−1⋮2n−1 => 3(2n−1) ⋮2n−1 => 6n – 3 ⋮2n−1 (2)
Từ (1) và (2) => (6n + 4) – (6n – 3) ⋮2n−1
=> 7 ⋮2n−1
=> 2n−1 ∈Ư(7)={1; −1;7; −7}
=>2n ∈{2;0;8; −6}
=>n ∈{1;0;4; −3}
Vậy n ∈{1;0;4; −3}.
c) n2 + 2n – 7 ⋮n+2
=>n(n+2)−7⋮n+2
=>7⋮n+2=>n+2∈{1; −1;7; −7}
=>n∈{−1; −3;5; −9}
Vậy n∈{−1; −3;5; −9}
d) n2+3n−5 là bội của n−2
=> n2+3n−5 ⋮ n−2
=> n2−2n+5n−10+5 ⋮ n−2
=> n(n - 2) + 5(n - 2) + 5 ⋮ n−2
=> 5 ⋮ n−2=>n−2∈{1; −1;5; −5}=>n∈{3; 1;7; −3}
Vậy n∈{3; 1;7; −3}.
a) n={0;±2;4}n={0;±2;4}
b) n={−9;±1;0;2;4;5;6;7;16}n={−9;±1;0;2;4;5;6;7;16}
c) n={−13;−3;−1;9}n={−13;−3;−1;9}
d) Không có n nguyên thỏa mãn
Giải thích các bước giải:
a) 3n3n ⋮⋮ n−1n−1
⇒3(n−1)+3⇒3(n−1)+3 ⋮⋮ n−1n−1
Do 3(n−1)3(n−1) ⋮⋮ n−1⇒3n−1⇒3 ⋮⋮ n−1n−1
⇒n−1∈Ư(3)={±1;±3}⇒n−1∈Ư(3)={±1;±3}
Với n−1=−1⇒n=0n−1=−1⇒n=0
n−1=1⇒n=2n−1=1⇒n=2
n−1=−3⇒n=−2n−1=−3⇒n=−2
n−1=3⇒n=4n−1=3⇒n=4
Vậy n={0;±2;4}n={0;±2;4}
b) 2n+72n+7 là bội của n−3⇒2n+7n−3⇒2n+7 ⋮⋮ n−3n−3
⇒2(n−3)+12⇒2(n−3)+12 ⋮⋮ n−3n−3
Do 2(n−3)2(n−3) ⋮⋮ n−3⇒12n−3⇒12 ⋮⋮ n−3n−3
⇒n−3∈Ư(12)={±1;±2;±3;±4;±12}⇒n−3∈Ư(12)={±1;±2;±3;±4;±12}
Ta có bảng sau:
n-3 -12 -4 -3 -2 -1 1 2 3 4 12
n -9 -1 0 1 2 4 5 6 7 15
Vậy n={−9;±1;0;2;4;5;6;7;16}n={−9;±1;0;2;4;5;6;7;16}
c) n+2n+2 là ước cửa 5n−1⇒5n−15n−1⇒5n−1 ⋮⋮ n+2n+2
5(n+2)−115(n+2)−11 ⋮⋮ n+2n+2
Do 5(n+2)5(n+2) ⋮⋮ n+2⇒11n+2⇒11 ⋮⋮ n+2n+2
⇒n+2∈Ư(11)={±1;±11}⇒n+2∈Ư(11)={±1;±11}
Ta có bảng sau:
n+2 -11 -1 1 11
n -13 -3 -1 9
Vậy n={−13;−3;−1;9}n={−13;−3;−1;9}
d) n−3n−3 là bội của n2+4n2+4
⇒n−3⇒n−3 ⋮⋮ n2+4n2+4
(n−3)(n+3)(n−3)(n+3) ⋮⋮ n2+4n2+4
n2−9n2−9 ⋮⋮ n2+4n2+4
n2+4−13n2+4−13 ⋮⋮ n2+4n2+4
Do n2+4n2+4 ⋮⋮ n2+4n2+4 nên 1313 ⋮⋮ n2+4n2+4
⇒n2+4∈Ư(13)={±1;±13}⇒n2+4∈Ư(13)={±1;±13}
do n2+4≥4n2+4≥4 nên ta chỉ xét n2+4={13}n2+4={13}
Với n2+4=13⇒n2=17⇒n=±√17n2+4=13⇒n2=17⇒n=±17 (loại)(do không là số nguyên)
2:
\(=3^n\cdot27+3^n\cdot3+2^n\cdot8+2^n\cdot4\)
\(=3^n\cdot30+2^n\cdot12\)
\(=6\left(3^n\cdot5+2^n\cdot2\right)⋮6\)