K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
15 tháng 6 2021

Có \(cos\left(3x+\frac{\pi}{3}\right)\le1,sin\left(\frac{5\pi}{6}+3x\right)\le1\)

do đó \(cos\left(3x+\frac{\pi}{3}\right)+sin\left(3x+\frac{5\pi}{6}\right)=2\)

\(\Leftrightarrow\hept{\begin{cases}cos\left(3x+\frac{\pi}{3}\right)=1\\sin\left(\frac{5\pi}{6}+3x\right)=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+\frac{\pi}{3}=k2\pi,\left(k\inℤ\right)\\\frac{5\pi}{6}+3x=\frac{\pi}{2}+l2\pi,\left(l\inℤ\right)\end{cases}}\)

\(\Leftrightarrow x=\frac{-\pi}{9}+\frac{k2\pi}{3},\left(k\inℤ\right)\)

17 tháng 9 2019

1.

        \(\cos2x+\sin\left(x+\frac{pi}{4}\right)=0\)

\(\Leftrightarrow\sin\left(x+\frac{pi}{4}\right)=-\cos2x\)

\(\Leftrightarrow\sin\left(x+\frac{pi}{4}\right)=\sin\left(2x-\frac{pi}{2}\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{pi}{4}=2x-\frac{pi}{2}+k2pi\\x+\frac{pi}{4}=pi-2x+\frac{pi}{2}+k2pi\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-x=-\frac{3}{4}pi+k2pi\\3x=+\frac{5}{4}pi+k2pi\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}pi+k2pi\\x=\frac{5}{12}pi+k\frac{2}{3}pi\end{cases}}\)

2.

\(\sin\left(3x-\frac{5pi}{6}\right)+\cos\left(3x+\frac{3pi}{6}\right)=0\)

\(\Leftrightarrow\sin\left(3x-\frac{5pi}{6}\right)=-\cos\left(3x+\frac{3pi}{6}\right)\)

\(\Leftrightarrow\sin\left(3x-\frac{5pi}{6}\right)=\sin\left(3x+\frac{3pi}{6}-\frac{pi}{2}\right)\)

\(\Leftrightarrow\orbr{\begin{cases}3x-\frac{5pi}{6}=3x+\frac{3pi}{6}-\frac{pi}{2}+k2pi\\3x-\frac{5pi}{6}=pi-3x-\frac{3pi}{6}+\frac{pi}{2}+k2pi\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}0x=\frac{5pi}{6}+k2pi\left(VN\right)\\6x=\frac{11pi}{6}+k2pi\end{cases}}\)

\(\Leftrightarrow x=\frac{11pi}{36}+k\frac{1}{3}pi\)

NV
7 tháng 8 2020

a/

\(sin^2x-sinx=2\left(1-sin^2x\right)\)

\(\Leftrightarrow3sin^2x-sinx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=arcsin\left(\frac{2}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{2}{3}\right)+k2\pi\end{matrix}\right.\)

2.

\(2sin^2x+\left(1-\sqrt{3}\right)sinx-\frac{\sqrt{3}}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sinx=\frac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\\x=\frac{\pi}{3}+k2\pi\\x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

3.

\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{\pi}{4}=\frac{\pi}{8}+k2\pi\\3x+\frac{\pi}{4}=-\frac{\pi}{8}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{24}+\frac{k2\pi}{3}\\x=-\frac{\pi}{8}+\frac{k2\pi}{3}\end{matrix}\right.\)

10 tháng 8 2020

e cảm ơn

1: cos(2x+pi/6)=cos(pi/3-3x)

=>2x+pi/6=pi/3-3x+k2pi hoặc 2x+pi/6=3x-pi/3+k2pi

=>5x=pi/6+k2pi hoặc -x=-1/2pi+k2pi

=>x=pi/30+k2pi/5 hoặc x=pi-k2pi

2: sin(2x+pi/6)=sin(pi/3-3x)

=>2x+pi/6=pi/3-3x+k2pi hoặc 2x+pi/6=pi-pi/3+3x+k2pi

=>5x=pi/6+k2pi hoặc -x=2/3pi-pi/6+k2pi

=>x=pi/30+k2pi/5 hoặc x=-1/2pi-k2pi

6 tháng 9 2023

1) \(cos\left(2x+\dfrac{\pi}{6}\right)=cos\left(\dfrac{\pi}{3}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=\dfrac{\pi}{3}-3x+k2\pi\\2x+\dfrac{\pi}{6}=-\dfrac{\pi}{3}+3x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{3}-\dfrac{\pi}{6}+k2\pi\\3x-2x=\dfrac{\pi}{3}+\dfrac{\pi}{6}-k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{2}-k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{30}+\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{2}-k2\pi\end{matrix}\right.\) \(\left(k\in N\right)\)

NV
22 tháng 3 2021

a.

\(y'=\dfrac{3}{cos^2\left(3x-\dfrac{\pi}{4}\right)}-\dfrac{2}{sin^2\left(2x-\dfrac{\pi}{3}\right)}-sin\left(x+\dfrac{\pi}{6}\right)\)

b.

\(y'=\dfrac{\dfrac{\left(2x+1\right)cosx}{2\sqrt{sinx+2}}-2\sqrt{sinx+2}}{\left(2x+1\right)^2}=\dfrac{\left(2x+1\right)cosx-4\left(sinx+2\right)}{\left(2x+1\right)^2}\)

c.

\(y'=-3sin\left(3x+\dfrac{\pi}{3}\right)-2cos\left(2x+\dfrac{\pi}{6}\right)-\dfrac{1}{sin^2\left(x+\dfrac{\pi}{4}\right)}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)      

\(\begin{array}{l}\sin \left( {2x - \frac{\pi }{6}} \right) =  - \frac{{\sqrt 3 }}{2}\\ \Leftrightarrow \sin \left( {2x - \frac{\pi }{6}} \right) = \sin \left( { - \frac{\pi }{3}} \right)\end{array}\)

\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{6} =  - \frac{\pi }{3} + k2\pi \\2x - \frac{\pi }{6} = \pi  + \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}2x =  - \frac{\pi }{6} + k2\pi \\2x = \frac{{3\pi }}{2} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{{12}} + k\pi \\x = \frac{{3\pi }}{4} + k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

b)     \(\begin{array}{l}\cos \left( {\frac{{3x}}{2} + \frac{\pi }{4}} \right) = \frac{1}{2}\\ \Leftrightarrow \cos \left( {\frac{{3x}}{2} + \frac{\pi }{4}} \right) = \cos \frac{\pi }{3}\end{array}\)

\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}\frac{{3x}}{2} + \frac{\pi }{4} = \frac{\pi }{3} + k2\pi \\\frac{{3x}}{2} + \frac{\pi }{4} = \frac{{ - \pi }}{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{18}} + \frac{{k4\pi }}{3}\\x = \frac{{ - 7\pi }}{{18}} + \frac{{k4\pi }}{3}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

c)       

\(\begin{array}{l}\sin 3x - \cos 5x = 0\\ \Leftrightarrow \sin 3x = \cos 5x\\ \Leftrightarrow \cos 5x = \cos \left( {\frac{\pi }{2} - 3x} \right)\\ \Leftrightarrow \left[ \begin{array}{l}5x = \frac{\pi }{2} - 3x + k2\pi \\5x =  - \left( {\frac{\pi }{2} - 3x} \right) + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}8x = \frac{\pi }{2} + k2\pi \\2x =  - \frac{\pi }{2} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{16}} + \frac{{k\pi }}{4}\\x =  - \frac{\pi }{4} + k\pi \end{array} \right.\end{array}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

d)      

\(\begin{array}{l}{\cos ^2}x = \frac{1}{4}\\ \Leftrightarrow \left[ \begin{array}{l}\cos x = \frac{1}{2}\\\cos x =  - \frac{1}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\cos x = \cos \frac{\pi }{3}\\\cos x = \cos \frac{{2\pi }}{3}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x =  - \frac{\pi }{3} + k2\pi \end{array} \right.\\\left[ \begin{array}{l}x = \frac{{2\pi }}{3} + k2\pi \\x =  - \frac{{2\pi }}{3} + k2\pi \end{array} \right.\end{array} \right.\end{array}\)

e)      

\(\begin{array}{l}\sin x - \sqrt 3 \cos x = 0\\ \Leftrightarrow \frac{1}{2}\sin x - \frac{{\sqrt 3 }}{2}\cos x = 0\\ \Leftrightarrow \cos \frac{\pi }{3}.\sin x - \sin \frac{\pi }{3}.\cos x = 0\\ \Leftrightarrow \sin \left( {x - \frac{\pi }{3}} \right) = 0\\ \Leftrightarrow \sin \left( {x - \frac{\pi }{3}} \right) = \sin 0\\ \Leftrightarrow x - \frac{\pi }{3} = k\pi ;k \in Z\\ \Leftrightarrow x = \frac{\pi }{3} + k\pi ;k \in Z\end{array}\)

f)       

\(\begin{array}{l}\sin x + \cos x = 0\\ \Leftrightarrow \frac{{\sqrt 2 }}{2}\sin x + \frac{{\sqrt 2 }}{2}\cos x = 0\\ \Leftrightarrow \cos \frac{\pi }{4}.\sin x + \sin \frac{\pi }{4}.\cos x = 0\\ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = 0\\ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \sin 0\\ \Leftrightarrow x + \frac{\pi }{4} = k\pi ;k \in Z\\ \Leftrightarrow x =  - \frac{\pi }{4} + k\pi ;k \in Z\end{array}\)

12 tháng 10 2018

ghi đề rõ xíu đi

13 tháng 10 2022

\(\Leftrightarrow cos^4x+sin^4x+\dfrac{1}{2}\left[sin\left(3x-\dfrac{pi}{4}+x-\dfrac{pi}{4}\right)+sin\left(3x-\dfrac{pi}{4}-x+\dfrac{pi}{4}\right)\right]-\dfrac{3}{2}=0\)

\(\Leftrightarrow1-\dfrac{1}{2}sin^22x+\dfrac{1}{2}\left[sin\left(4x-\dfrac{pi}{2}\right)+sin2x\right]-\dfrac{3}{2}=0\)

=>\(-\dfrac{1}{2}sin^22x-\dfrac{1}{2}+\dfrac{1}{2}\left[-sin\left(\dfrac{pi}{2}-4x\right)+sin2x\right]=0\)

=>\(-sin^22x-1-cos4x+sin2x=0\)

=>\(-sin^22x-1-\left(1-2sin^22x\right)+sin2x=0\)

=>\(-sin^22x-1-1+2sin^22x+sin2x=0\)

=>\(sin^22x+sin2x-2=0\)

=>sin2x-1=0

=>sin2x=1

=>2x=pi/2+k2pi

=>x=pi/4+kpi

NV
2 tháng 5 2020

Lúc đầu lỗi tè le, mình tự sửa lại đề cho nó hiển thị bình thường đấy

Phuong Tran

NV
1 tháng 5 2020

Đề bạn này ghi toàn lỗi dịch mệt quá

\(\Leftrightarrow sin\left(\frac{\pi}{6}+3x\right)+sin\left(\frac{\pi}{3}+x\right)+cos\left(\frac{\pi}{2}-x\right)-cos5x=0\)

\(\Leftrightarrow2sin\left(2x+\frac{\pi}{4}\right)cos\left(x-\frac{\pi}{12}\right)+2sin\left(2x+\frac{\pi}{4}\right)sin\left(3x-\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(2x+\frac{\pi}{4}\right)=0\\cos\left(x-\frac{\pi}{12}\right)=-sin\left(3x-\frac{\pi}{4}\right)=cos\left(3x+\frac{\pi}{4}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{4}=k\pi\\x-\frac{\pi}{12}=3x+\frac{\pi}{4}+k2\pi\\x-\frac{\pi}{12}=-3x-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
4 tháng 8 2020

\(\Leftrightarrow sin\left(3x-\frac{5\pi}{6}\right)=-cos\left(3x+\frac{3\pi}{4}\right)=sin\left(3x+\frac{3\pi}{4}-\frac{\pi}{2}\right)\)

\(\Leftrightarrow sin\left(3x-\frac{5\pi}{6}\right)=sin\left(3x+\frac{\pi}{4}\right)\)

\(\Leftrightarrow3x-\frac{5\pi}{6}=\pi-3x-\frac{\pi}{4}+k2\pi\)

\(\Leftrightarrow6x=\frac{19\pi}{12}+k2\pi\)

\(\Leftrightarrow x=\frac{19\pi}{72}+\frac{k\pi}{3}\)

3 tháng 8 2020

Trường hợp này nên khai triển hết ra:

\(\Leftrightarrow\sin3x.\cos\frac{5\pi}{6}-\cos3x.\sin\frac{5\pi}{6}+\cos3x.\cos\frac{3\pi}{4}-\sin3x.\sin\frac{3\pi}{4}=0\)

\(\Leftrightarrow\frac{-\sqrt{3}}{2}\sin3x-\frac{1}{2}\cos3x-\frac{\sqrt{2}}{2}\cos3x-\frac{\sqrt{2}}{2}\sin3x=0\)

\(\Leftrightarrow\left(\sqrt{3}+\sqrt{2}\right)\sin3x=-\left(1+\sqrt{2}\right)\cos3x\)

\(\Rightarrow\sin3x=-\frac{1+\sqrt{2}}{\sqrt{3}+\sqrt{2}}\cos3x\)

\(\Rightarrow\left\{{}\begin{matrix}\sin3x=-\frac{1+\sqrt{2}}{\sqrt{3}+\sqrt{2}}\cos3x\\\sin^23x+\cos^23x=1\end{matrix}\right.\)

Hệ phương trình 2 ẩn, tự giải nha :)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)

\(\sin \left( {2x + \frac{\pi }{4}} \right) = \sin x \Leftrightarrow \left[ \begin{array}{l}2x + \frac{\pi }{4} = x + k2\pi \\2x + \frac{\pi }{4} = \pi  - x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{4} + k2\pi \\3x = \pi  - \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{4} + k2\pi \\x = \frac{\pi }{4} + \frac{{k2\pi }}{3}\end{array} \right.;k \in Z\)

b)

\(\begin{array}{l}\sin 2x = \cos 3x\\ \Leftrightarrow \cos 3x = \cos \left( {\frac{\pi }{2} - 2x} \right)\\ \Leftrightarrow \left[ \begin{array}{l}3x = \frac{\pi }{2} - 2x + k2\pi \\3x =  - \left( {\frac{\pi }{2} - 2x} \right) + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}5x = \frac{\pi }{2} + k2\pi \\x =  - \frac{\pi }{2} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{10}} + \frac{{k2\pi }}{5}\\x =  - \frac{\pi }{2} + k2\pi \end{array} \right.\end{array}\)

c)

\(\begin{array}{l}{\cos ^2}2x = {\cos ^2}\left( {x + \frac{\pi }{6}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}\cos 2x = \cos \left( {x + \frac{\pi }{6}} \right)\\\cos 2x =  - \cos \left( {x + \frac{\pi }{6}} \right)\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\cos 2x = \cos \left( {x + \frac{\pi }{6}} \right)\\\cos 2x = \cos \left( {\pi  - \left( {x + \frac{\pi }{6}} \right)} \right)\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\cos 2x = \cos \left( {x + \frac{\pi }{6}} \right)\\\cos 2x = \cos \left( {\frac{{5\pi }}{6} - x} \right)\end{array} \right.\end{array}\)

Với \(\cos 2x = \cos \left( {x + \frac{\pi }{6}} \right) \Leftrightarrow \left[ \begin{array}{l}2x =  - \left( {x + \frac{\pi }{6}} \right) + k2\pi \\2x = x + \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3x =  - \frac{\pi }{6} + k2\pi \\x = \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{{18}} + \frac{{k2\pi }}{3}\\x = \frac{\pi }{6} + k2\pi \end{array} \right.\)

Với \(\cos 2x = \cos \left( {\frac{{5\pi }}{6} - x} \right) \Leftrightarrow \left[ \begin{array}{l}2x = \frac{{5\pi }}{6} - x + k2\pi \\2x =  - \left( {\frac{{5\pi }}{6} - x} \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3x = \frac{{5\pi }}{6} + k2\pi \\x =  - \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\pi }}{{18}} + \frac{{k2\pi }}{3}\\x =  - \frac{{5\pi }}{6} + k2\pi \end{array} \right.\)

NV
16 tháng 9 2020

c.

\(\Leftrightarrow sin\left(3x+\frac{2\pi}{3}\right)=-sin\left(x-\frac{2\pi}{5}-\pi\right)\)

\(\Leftrightarrow sin\left(3x+\frac{2\pi}{3}\right)=sin\left(x-\frac{2\pi}{5}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{2\pi}{3}=x-\frac{2\pi}{5}+k2\pi\\3x+\frac{2\pi}{3}=\frac{7\pi}{5}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{8\pi}{15}+k\pi\\x=\frac{11\pi}{60}+\frac{k\pi}{2}\end{matrix}\right.\)

d.

\(\Leftrightarrow cos\left(4x+\frac{\pi}{3}\right)=sin\left(\frac{\pi}{4}-x\right)\)

\(\Leftrightarrow cos\left(4x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{4}+x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{\pi}{3}=\frac{\pi}{4}+x+k2\pi\\4x+\frac{\pi}{3}=-\frac{\pi}{4}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{7\pi}{60}+\frac{k2\pi}{5}\end{matrix}\right.\)

NV
16 tháng 9 2020

a.

\(sin\left(2x+1\right)=-cos\left(3x-1\right)\)

\(\Leftrightarrow sin\left(2x+1\right)=sin\left(3x-1-\frac{\pi}{2}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1-\frac{\pi}{2}=2x+1+k2\pi\\3x-1-\frac{\pi}{2}=\pi-2x-1+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+2+k2\pi\\x=\frac{3\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)

b.

\(sin\left(2x-\frac{\pi}{6}\right)=sin\left(\frac{\pi}{4}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{4}-x+k2\pi\\2x-\frac{\pi}{6}=\frac{3\pi}{4}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{36}+\frac{k2\pi}{3}\\x=\frac{11\pi}{12}+k2\pi\end{matrix}\right.\)