K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8

Đề yêu cầu cái gì thế? Em ơi!

12 tháng 8

????????

23 tháng 11 2023

loading...  loading...  loading...  loading...  

20 tháng 12 2021

\(a,=\dfrac{x^2-2xy+y^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x-y}{x+y}\\ b,=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2-4y^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{4xy-4y^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{4y\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{4y}{x+y}\)

20 tháng 12 2021

a.\(\dfrac{\left(x-y\right)^2}{x^2-y^2}\)
b.

31 tháng 7 2016

a) \(\left(x+y\right)^2+\left(x-y\right)^2+\left(x+y\right)\left(x-y\right)\)

\(=x^2+2xy+y^2+x^2-2xy+y^2+x^2-y^2\)

\(=3x^2+y^2\)

b)\(\left(3x+y\right)^2+\left(3x-y\right)^2-\left(2x+y\right)\left(2x-y\right)\)

\(=9x^2+6xy+y^2+9x^2-6xy+y^2-4x^2+y^2\)

\(=14x^2+3y^2\)

c) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)

\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x-y+x+y\right)^2\)

\(=4x^2\)

d)\(-2\left(x^2-9y^2\right)+\left(x-3y\right)^2+\left(x+3y\right)^2\)

\(=\left(x+3y\right)^2-2\left(x+3y\right)\left(x-3y\right)+\left(x-3y\right)^2\)

\(=\left(x+3y-x+3y\right)^2=9y^2\)

30 tháng 6 2019

\(a,\left(x+2\right)^2-\left(x-2\right)^2-2\left(x-2\right)\left(x+2\right).\)

\(=\left(x+2-x+2\right)^2=4^2=16\)

\(b,\left(x-y\right)^2+\left(x+y\right)^2+2\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y+x+y\right)^2=x^2\)

\(c,\left(x-y+z\right)^2-2\left(x+y\right)-2\left(x+y\right)\left(x-y\right)-z^2\)

DT
19 tháng 6 2023

\(\left(a\right):\left(x+y\right)^2-\left(x-y\right)^2=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)\\ =x^2+2xy+y^2-x^2+2xy-y^2\\ =4xy\)

\(\left(b\right):\left(x-y-z\right)^2+\left(x+y+z\right)^2\\ =\left[\left(x-y\right)-z\right]^2+\left[\left(x+y\right)+z\right]^2\\ =\left(x-y\right)^2-2z\left(x-y\right)+z^2+\left(x+y\right)^2+2z\left(x+y\right)+z^2\\ =x^2-2xy+y^2-2xz+2yz+z^2+x^2+2xy+y^2+2xz+2yz+z^2\\ =2x^2+2y^2+2z^2+4yz\)

\(\left(c\right):\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =\left(2y\right)^2=4y^2\)

8 tháng 9 2019

toi ko bit lam chi biet lam anh thui

8 tháng 9 2019

Mk cũng khá tốt về Anh nha bạn

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

\(\begin{array}{l}T + H = 3{x^2}y - 2x{y^2} + xy + \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy - 2{x^2}y + 3x{y^2} + 1\\ = \left( {3{x^2}y - 2{x^2}y} \right) + \left( { - 2x{y^2} + 3x{y^2}} \right) + xy + 1\\ = {x^2}y + x{y^2} + xy + 1\\T - H = 3{x^2}y - 2x{y^2} + xy - \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy + 2{x^2}y - 3x{y^2} - 1\\ = \left( {3{x^2}y + 2{x^2}y} \right) + \left( { - 2x{y^2} - 3x{y^2}} \right) + xy - 1\\ = 5{x^2}y - 5x{y^2} + xy - 1\end{array}\)

Chọn B.