K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2024

A B C a b c H K

a/ Dựng \(AH\perp BC\left(H\in BC\right)\)

Xét tg vuông ACH có

\(\cos C=\dfrac{CH}{AC}=\dfrac{CH}{b}\Rightarrow CH=b\cos C\)

Xét tg vuông ABH có

\(\cos B=\dfrac{BH}{AB}=\dfrac{BH}{c}\Rightarrow BH=c\cos B\)

\(\Rightarrow CH+BH=BC=a=b\cos C+c\cos B\)

b/

Đặt \(\widehat{BAH}=\alpha;\widehat{CAH}=\beta\)

\(\Rightarrow\cos A=\cos\left(\alpha+\beta\right)=\cos\alpha\cos\beta-\sin\alpha\sin\beta=\)

\(=\dfrac{AH}{c}.\dfrac{AH}{b}-\dfrac{BH}{c}.\dfrac{CH}{b}=\dfrac{AH^2-BH.CH}{bc}=\)

\(=\dfrac{2AH^2-2BH.CH}{2bc}=\dfrac{c^2-BH^2+b^2-CH^2-2BH.CH}{2bc}=\)

\(=\dfrac{b^2+c^2-\left(BH+CH\right)^2}{2bc}=\dfrac{b^2+c^2-a^2}{2bc}\)

 

18 tháng 8 2017

A B C H 2 căn 2 8 căn 3 75 45 60 90 Áp dụng tỉ số lượng giác ta có :

\(\sin B=\dfrac{AH}{AB}\Rightarrow AH=AB.\sin B\Rightarrow AH=\sqrt[2]{2}.\sin45^0=1cm\)

\(\cos B=\dfrac{HB}{AB}\Rightarrow HB=AB.\cos B=\sqrt[2]{2}.\cos45^0=1cm\)

\(\tan C=\dfrac{AH}{CH}\Rightarrow HC=\dfrac{AH}{\tan C}=\dfrac{1}{\tan60^0}=\dfrac{\sqrt{3}}{3}\)

Vậy \(BC=1+\dfrac{\sqrt{3}}{3}=\dfrac{3+\sqrt{3}}{3}\)

AH
Akai Haruma
Giáo viên
13 tháng 10 2018

Lời giải:

Kẻ \(BH\perp AC\)

Theo công thức lượng giác:

\(\frac{BH}{AB}=\sin A; \frac{AH}{AB}=\cos A\Rightarrow BH=\sin A. AB=c\sin A; AH=\cos A.AB=c\cos A\)

\(\Rightarrow CH=AC-AH=b-c\cos A\)

Do đó áp dụng định lý Pitago:

\(BC^2=BH^2+CH^2\)

\(\Leftrightarrow a^2=(c\sin A)^2+(b-c\cos A)^2\)

\(\Leftrightarrow a^2=c^2\sin ^2A+b^2+c^2\cos ^2A-2bc\cos A\)

\(\Leftrightarrow a^2=c^2(\sin ^2A+\cos ^2A)+b^2-2bc\cos A\)

\(\Leftrightarrow a^2=c^2+b^2-2bc\cos A\)

Ta có đpcm.

27 tháng 6 2021

từ B kẻ đường thẳng vuông góc với AC tại k

ta có: 2.AK.b=AK.b+AK.b           

=AK.(AK+CK)+(b-CK).b

=AK^2+AK.CK+b^2-b.CK

=c^2-BK^2+b^2-CK.(b-AK)

=c^2-(a^2-CK^2)+b^2-CK.CK

=c^2-a^2+CK^2+b^2-CK^2

=b^2+c^2-a^2

mà: cosA=AK/c=2.AK.b/2bc

=(b^2+c^2-a^2)/2bc

=>b^2+c^2-a^2=2bc.cosA (đpcm)

 

27 tháng 6 2021

hay phết

13 tháng 7 2017

hehe cho xl em mk hk lop 6

13 tháng 7 2017

tam giác vuông ở đâu z ???

1. Cho tam giác ABC vuông tại A, đường cao AH, AH = 12cm, BC = 25cm. Tính BH, HC, AB, AC 2. Tam giác ABC vuông tại B, góc A = 30 độ, AB = a. Tính độ dài các cạnh của tam giác theo a 3. Cho tam giác ABC có 3 góc nhọn a. CM: sinA + cosA >1 b. Vẽ đường cao AH. CM: AH= BC/(cotgB+cotgC) c. Biết BC = 12cm, góc B = 60 độ, góc C = 45độ. Tính S tam giác ABC. 4. Cho tam giác ABC có 3 góc nhọn AB=c, AC=b, BC=a. a. Cmr: a/(sinA) = b/(sinB) =...
Đọc tiếp

1. Cho tam giác ABC vuông tại A, đường cao AH, AH = 12cm, BC = 25cm. Tính BH, HC, AB, AC

2. Tam giác ABC vuông tại B, góc A = 30 độ, AB = a. Tính độ dài các cạnh của tam giác theo a

3. Cho tam giác ABC có 3 góc nhọn
a. CM: sinA + cosA >1
b. Vẽ đường cao AH. CM: AH= BC/(cotgB+cotgC)
c. Biết BC = 12cm, góc B = 60 độ, góc C = 45độ. Tính S tam giác ABC.
4. Cho tam giác ABC có 3 góc nhọn AB=c, AC=b, BC=a.
a. Cmr: a/(sinA) = b/(sinB) = c/(sinC)
b. Biết 2a= b+c. CM: 2sinA = sinB+sinC.
5. Cho tam giác ABC có 3 góc nhọn, AB=c, AC=b, BC=a. Cmr: a^2 = (b^2)+(c^2)-2bc. cosA
6. Cho tam giác ABC có các góc đều nhọn, góc B > góc C, đường cao AH và trung tuyến AM. Đặt góc HAM = α . CM: tg α = (cotgC-cotgB)/2

7. Cho đường tròn tâm O và M là điểm ở ngoài đường tròn. Qua M kẻ tiếp tuyến MA, MB (A, B là tiếp điểm) và một cát tuyến cắt đường tròn tại C, D,
a/ Gọi I là trung điểm của CD. Chứng minh bốn điểm A,B,O,I nằm trên một đường tròn.
b/ AB cắt CD tại E. Chứng minh MA^2=ME.MI

2
20 tháng 6 2018

Bạn ra đề thế này thì học sinh dù có giỏi đến mấy cx méo làm hết đc đâu

bn vào tìm câu hỏi tương tự đieoeo

Chúc bạn học tốthihi

20 tháng 6 2018

đc nhưng lười nên méo thềm làm thôi banh

18 tháng 8 2020

4/Gọi hai trung tuyến kẻ từ B, C là BM và CN, chúng cắt nhau tại O
Bây giờ ta sẽ chứng minh rằng : Nếu hai trung tuyến đó vuông góc thì b^2 + c^2 = 5a^2 , từ đó suy ra điều ngược lại (vì mệnh đề này đúng với thuận và đảo)
Gỉa sử BM vuông góc với CN tại O
Ta đặt OM = x => OB = 2x và => OC =2y
AB^2/4 + AC^2/4= NB^2 + MC^2 = ON^2 + OB^2 + OM^2 + OC^2 = 5(x^2 + y^2)
=> AB^2 + AC^2 = 20(x^2 + y^2)
Mà BC^2 = OC^2 + OB^2 = 4(x^2 + y^2)
Suy ra : AB^2 + AC^2 = 5.4(x^2 + y^2) = 5BC^2 hay b^2 + c^2 = 5a^2
 ta có điều ngược lại là nếu b^2 + c^2 = 5a^2 thì hai trung tuyến vuông góc(cái này tự làm ngược nha bn)

18 tháng 8 2020

5
A B C 36 D H x x

Vẽ tam giác ABC cân tại A có góc A bằng 36 độ. Và BC=1.Khi đó  góc B = góc C = 72 độ.

Vẽ BD phân giác góc B  , DH vuông góc AB. Đặt AH=BH=x, ta có AB=AC=2x và DC=2x-1

Cm được tam giác ABD và BCD cân => AD=BD=BC=1

cos A = cos 36 = AH/AD=x/1=x

Vì BD là đường phân giác nên AD/DC=AB/AC => \(\frac{1}{2x-1}=\frac{2x}{1}\)

=> \(4x^2-2x-1=0\Leftrightarrow\left(2x-\frac{1}{2}\right)^2-\left(\frac{\sqrt{5}}{2}\right)^2=0\)

\(\Leftrightarrow\left(2x-\frac{1}{2}-\frac{\sqrt{5}}{2}\right)\left(2x-\frac{1}{2}+\frac{\sqrt{5}}{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{4}\left(N\right)\\x=\frac{1-\sqrt{5}}{4}< 0\left(L\right)\end{cases}}\)

Vậy  cos 36o = (1 + √5)/4

7 tháng 6 2021

a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)

b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)

Tương tự \(\Rightarrow CH=BC.sin^2B\)