K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7

A B C a b c H K

a/ Dựng \(AH\perp BC\left(H\in BC\right)\)

Xét tg vuông ACH có

\(\cos C=\dfrac{CH}{AC}=\dfrac{CH}{b}\Rightarrow CH=b\cos C\)

Xét tg vuông ABH có

\(\cos B=\dfrac{BH}{AB}=\dfrac{BH}{c}\Rightarrow BH=c\cos B\)

\(\Rightarrow CH+BH=BC=a=b\cos C+c\cos B\)

b/

Đặt \(\widehat{BAH}=\alpha;\widehat{CAH}=\beta\)

\(\Rightarrow\cos A=\cos\left(\alpha+\beta\right)=\cos\alpha\cos\beta-\sin\alpha\sin\beta=\)

\(=\dfrac{AH}{c}.\dfrac{AH}{b}-\dfrac{BH}{c}.\dfrac{CH}{b}=\dfrac{AH^2-BH.CH}{bc}=\)

\(=\dfrac{2AH^2-2BH.CH}{2bc}=\dfrac{c^2-BH^2+b^2-CH^2-2BH.CH}{2bc}=\)

\(=\dfrac{b^2+c^2-\left(BH+CH\right)^2}{2bc}=\dfrac{b^2+c^2-a^2}{2bc}\)

 

18 tháng 8 2017

A B C H 2 căn 2 8 căn 3 75 45 60 90 Áp dụng tỉ số lượng giác ta có :

\(\sin B=\dfrac{AH}{AB}\Rightarrow AH=AB.\sin B\Rightarrow AH=\sqrt[2]{2}.\sin45^0=1cm\)

\(\cos B=\dfrac{HB}{AB}\Rightarrow HB=AB.\cos B=\sqrt[2]{2}.\cos45^0=1cm\)

\(\tan C=\dfrac{AH}{CH}\Rightarrow HC=\dfrac{AH}{\tan C}=\dfrac{1}{\tan60^0}=\dfrac{\sqrt{3}}{3}\)

Vậy \(BC=1+\dfrac{\sqrt{3}}{3}=\dfrac{3+\sqrt{3}}{3}\)

AH
Akai Haruma
Giáo viên
13 tháng 10 2018

Lời giải:

Kẻ \(BH\perp AC\)

Theo công thức lượng giác:

\(\frac{BH}{AB}=\sin A; \frac{AH}{AB}=\cos A\Rightarrow BH=\sin A. AB=c\sin A; AH=\cos A.AB=c\cos A\)

\(\Rightarrow CH=AC-AH=b-c\cos A\)

Do đó áp dụng định lý Pitago:

\(BC^2=BH^2+CH^2\)

\(\Leftrightarrow a^2=(c\sin A)^2+(b-c\cos A)^2\)

\(\Leftrightarrow a^2=c^2\sin ^2A+b^2+c^2\cos ^2A-2bc\cos A\)

\(\Leftrightarrow a^2=c^2(\sin ^2A+\cos ^2A)+b^2-2bc\cos A\)

\(\Leftrightarrow a^2=c^2+b^2-2bc\cos A\)

Ta có đpcm.

27 tháng 6 2021

từ B kẻ đường thẳng vuông góc với AC tại k

ta có: 2.AK.b=AK.b+AK.b           

=AK.(AK+CK)+(b-CK).b

=AK^2+AK.CK+b^2-b.CK

=c^2-BK^2+b^2-CK.(b-AK)

=c^2-(a^2-CK^2)+b^2-CK.CK

=c^2-a^2+CK^2+b^2-CK^2

=b^2+c^2-a^2

mà: cosA=AK/c=2.AK.b/2bc

=(b^2+c^2-a^2)/2bc

=>b^2+c^2-a^2=2bc.cosA (đpcm)

 

27 tháng 6 2021

hay phết

13 tháng 7 2017

hehe cho xl em mk hk lop 6

13 tháng 7 2017

tam giác vuông ở đâu z ???

7 tháng 6 2021

a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)

b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)

Tương tự \(\Rightarrow CH=BC.sin^2B\)

14 tháng 7 2021

Áp dụng hệ quả của định lý Cosin ta có:

\(\cos C=\dfrac{b^2+a^2-c^2}{2ab};\cos B=\dfrac{c^2+a^2-b^2}{2ca}\)

\(\Rightarrow b\cos C+c\cos B=b\dfrac{b^2+a^2-c^2}{2ab}+c\dfrac{c^2+a^2-b^2}{2ca}=\)

\(\dfrac{b^2+a^2-c^2}{2a}+\dfrac{c^2+a^2-b^2}{2a}=\dfrac{2a^2}{2a}=a\)