K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2021

từ B kẻ đường thẳng vuông góc với AC tại k

ta có: 2.AK.b=AK.b+AK.b           

=AK.(AK+CK)+(b-CK).b

=AK^2+AK.CK+b^2-b.CK

=c^2-BK^2+b^2-CK.(b-AK)

=c^2-(a^2-CK^2)+b^2-CK.CK

=c^2-a^2+CK^2+b^2-CK^2

=b^2+c^2-a^2

mà: cosA=AK/c=2.AK.b/2bc

=(b^2+c^2-a^2)/2bc

=>b^2+c^2-a^2=2bc.cosA (đpcm)

 

27 tháng 6 2021

hay phết

AH
Akai Haruma
Giáo viên
13 tháng 10 2018

Lời giải:

Kẻ \(BH\perp AC\)

Theo công thức lượng giác:

\(\frac{BH}{AB}=\sin A; \frac{AH}{AB}=\cos A\Rightarrow BH=\sin A. AB=c\sin A; AH=\cos A.AB=c\cos A\)

\(\Rightarrow CH=AC-AH=b-c\cos A\)

Do đó áp dụng định lý Pitago:

\(BC^2=BH^2+CH^2\)

\(\Leftrightarrow a^2=(c\sin A)^2+(b-c\cos A)^2\)

\(\Leftrightarrow a^2=c^2\sin ^2A+b^2+c^2\cos ^2A-2bc\cos A\)

\(\Leftrightarrow a^2=c^2(\sin ^2A+\cos ^2A)+b^2-2bc\cos A\)

\(\Leftrightarrow a^2=c^2+b^2-2bc\cos A\)

Ta có đpcm.

13 tháng 7 2017

hehe cho xl em mk hk lop 6

13 tháng 7 2017

tam giác vuông ở đâu z ???

5 tháng 6 2015

 

ABCHbc

Trong tam giác vuông ACH có AC2 = AH2 + CH2 = AH2 + (BC - BH)= AH2 + BC2 - 2.BC.BH + BH2

Trong tam giác vuông ABH có AH2 + BH2 = AB2 và BH = AB.cosB hay BH = c.cosB

Suy ra AC2 = BC2 + AB2 - 2BC.c.cosB hay b2 = a2 + c2 - 2ac.cosB

 
30 tháng 6 2019

Hiện tại lm đc câu a, câu b tí nx làm

Mk sẽ ko tính theo a,b,c mà tính theo AB,AC,BC

Kẻ đg cao CH\(\Rightarrow\cos A=\frac{AH}{AC}\)

Xét \(VP=AH^2+HC^2+\left(AH+HB\right)^2-2AB.AC.\frac{AH}{AC}\)

\(=AH^2+HC^2+AH^2+HB^2+2AH.HB-2AB.AH\)

\(=2AH^2+BC^2-2AH\left(AB-HB\right)=2AH^2+BC^2-2AH.AH=2AH^2+BC^2-2AH^2=BC^2=VT\)

30 tháng 6 2019

Cái kia phải là \(\tan\frac{\widehat{ABC}}{2}\) ms đúng

Kẻ phân giác BM

\(\tan\widehat{\frac{ABC}{2}}=\tan\widehat{ABM}=\frac{AM}{AB}\)

Có BD là p/g\(\Rightarrow\frac{AM}{AB}=\frac{MC}{BC}\Leftrightarrow AB=\frac{AM.BC}{MC}\)

Xét \(VT=\frac{AC}{AB+BC}=\frac{AC}{\frac{AM.BC}{MC}+BC}=\frac{AC}{\frac{BC\left(AM+MC\right)}{MC}}=\frac{AC.MC}{BC.AC}=\frac{MC}{BC}\)

\(\frac{MC}{BC}=\frac{AM}{AB}=\tan\widehat{ABM}\)

\(\Leftrightarrow\frac{AC}{AB+BC}=\tan\widehat{ABM}=\tan\frac{\widehat{ABC}}{2}\)