Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hiện tại lm đc câu a, câu b tí nx làm
Mk sẽ ko tính theo a,b,c mà tính theo AB,AC,BC
Kẻ đg cao CH\(\Rightarrow\cos A=\frac{AH}{AC}\)
Xét \(VP=AH^2+HC^2+\left(AH+HB\right)^2-2AB.AC.\frac{AH}{AC}\)
\(=AH^2+HC^2+AH^2+HB^2+2AH.HB-2AB.AH\)
\(=2AH^2+BC^2-2AH\left(AB-HB\right)=2AH^2+BC^2-2AH.AH=2AH^2+BC^2-2AH^2=BC^2=VT\)
Cái kia phải là \(\tan\frac{\widehat{ABC}}{2}\) ms đúng
Kẻ phân giác BM
Có \(\tan\widehat{\frac{ABC}{2}}=\tan\widehat{ABM}=\frac{AM}{AB}\)
Có BD là p/g\(\Rightarrow\frac{AM}{AB}=\frac{MC}{BC}\Leftrightarrow AB=\frac{AM.BC}{MC}\)
Xét \(VT=\frac{AC}{AB+BC}=\frac{AC}{\frac{AM.BC}{MC}+BC}=\frac{AC}{\frac{BC\left(AM+MC\right)}{MC}}=\frac{AC.MC}{BC.AC}=\frac{MC}{BC}\)
Mà \(\frac{MC}{BC}=\frac{AM}{AB}=\tan\widehat{ABM}\)
\(\Leftrightarrow\frac{AC}{AB+BC}=\tan\widehat{ABM}=\tan\frac{\widehat{ABC}}{2}\)
1) a) Từ C dựng đường cao CF
Ta có: \(\sin A=\frac{CF}{b};\sin B=\frac{CF}{a}\)\(\Rightarrow\)\(\frac{\sin A}{\sin B}=\frac{\frac{CF}{b}}{\frac{CF}{a}}=\frac{a}{b}\)\(\Leftrightarrow\)\(\frac{a}{\sin A}=\frac{b}{\sin B}\) (1)
Từ A dựng đường cao AH
Có: \(\sin B=\frac{AH}{c};\sin C=\frac{AH}{b}\)\(\Rightarrow\)\(\frac{\sin B}{\sin C}=\frac{\frac{AH}{c}}{\frac{AH}{b}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\frac{b}{\sin B}=\frac{c}{\sin C}\) (2)
(1), (2) => đpcm
b) từ a) ta có: \(\hept{\begin{cases}\sin A=\frac{CF}{b}\\\cos A=\frac{AF}{b}\end{cases}\Leftrightarrow\hept{\begin{cases}CF=b.\sin A\\AF=b.\cos A\end{cases}}}\)
Có: \(BF=c-AF=c-b.\cos A\)
Py-ta-go:
\(a^2=BF^2+CF^2=\left(c-b.\cos A\right)^2+\left(b.\sin A\right)^2=c^2+b^2.\cos^2A+b^2.\sin^2A-2bc.\cos A\)
\(=b^2\left(\sin^2A+\cos^2A\right)+c^2-2bc.\cos A=b^2+c^2-2bc.\cos A\) (đpcm)
c) Có: \(\hept{\begin{cases}\cos A=\frac{AF}{b}\\\cos B=\frac{BF}{a}\end{cases}\Rightarrow b.\cos A+a.\cos B=b.\frac{AF}{b}+a.\frac{BF}{a}=AF+BF=c}\)
bài 2 mk có làm r bn ib mk gửi link nhé
từ B kẻ đường thẳng vuông góc với AC tại k
ta có: 2.AK.b=AK.b+AK.b
=AK.(AK+CK)+(b-CK).b
=AK^2+AK.CK+b^2-b.CK
=c^2-BK^2+b^2-CK.(b-AK)
=c^2-(a^2-CK^2)+b^2-CK.CK
=c^2-a^2+CK^2+b^2-CK^2
=b^2+c^2-a^2
mà: cosA=AK/c=2.AK.b/2bc
=(b^2+c^2-a^2)/2bc
=>b^2+c^2-a^2=2bc.cosA (đpcm)