Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn gốc thế năng tại VT dây thẳng đứng.
Áp dụng định luật bảo toàn năng lượng ta có:
\(W=mgl\left(1-\cos\alpha_0\right)=W_d+W_t=W_d+mgl\left(1-\cos\alpha\right)\)
\(\Rightarrow W_d=mgl\left(1-\cos\alpha_0-1+\cos\alpha\right)=mgl\left(\frac{\alpha^2_0}{2}-\frac{\alpha^2}{2}\right)\)
\(=0,1.10.0,8.\left(\frac{\left(\frac{8}{180}\pi\right)^2-\left(\frac{4}{180}\pi\right)^2}{2}\right)\approx5,84\left(mJ\right)\)
Cơ năng của con lắc đơn có chiều dài l, dao động với biên độ góc α 0 là
Đáp án C
Chọn đáp án A
Cơ năng dao động điều hòa:
W
=
1
2
m
ω
2
A
2
→
A
=
l
α
0
ω
2
=
g
l
W
=
1
2
m
g
l
l
α
0
2
=
1
2
m
g
l
α
0
2
Chọn D
Thế năng: Et = mghB = mgl(1 - cosa)
Năng lượng: E =Et max= mghmax= mgll.(1 - cosa0)
(Năng lượng bằng thế năng cực đại ở biên)
- Động năng:
Xét tại vị trí B, hợp lực tác dụng lên quả nặng là lực hướng tâm: (ở đây ký hiệu T là lực căng)
Thế R = l và (1) vào (3) ta được T = mg(3cosa - 2cosa0)
Khi Eđ = 2Et → Et = E/3 ↔ mgl(1 - cosa) = mgl.(1 - cosa0)/3→cosα = (2 + cosα0)/3
→ T = mg(2 – cosa0).
Chọn đáp án B.
Năng lượng của hai con lắc bằng nhau:
1 4 k A 2 = 1 2 m g l α 0 2 ⇒ k m = g l α 0 2 A 2 .