\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)CMR\(\frac{\left(19a+5b+198...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2019

Chiều mai mình nộp ạ

Từ đề bài ta có : \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\) ( T/c tỉ lệ thức )

Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)

Và \(\frac{a}{c}=\frac{b}{d}\Leftrightarrow\left(\frac{a}{c}\right)^{2003}=\left(\frac{b}{d}\right)^{2003}\Leftrightarrow\frac{a^{2003}}{c^{2003}}=\frac{b^{2003}}{d^{2003}}\)

Áp dụng t/x dãy tỉ số bằng nhau ta có : \(\frac{a^{2003}}{c^{2003}}=\frac{b^{2003}}{d^{2003}}=\frac{a^{2003}+b^{2003}}{c^{2003}+d^{2003}}\left(1\right)\)

Mà \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^{2003}}{c^{2003}}=\frac{b^{2003}}{d^{2003}}=\frac{\left(a-b\right)^{2003}}{\left(c-d\right)^{2003}}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow\frac{\left(a-b\right)^{2003}}{\left(c-d\right)^{2003}}=\frac{a^{2003}+b^{2003}}{c^{2003}+d^{2003}}\left(đpcm\right)\)

2 tháng 1 2017

Đặt \(\frac{a}{2003}\) = \(\frac{b}{2004}\) = \(\frac{c}{2005}\) = k

=> a = 2003k; b = 2004k và c = 2005k

Xét hiệu:

4(a - b)(b - c) - (c - a)2

= 4(2003k - 2004k)(2004k - 2005k) - (2005k - 2003k)2

= 4(-k)(-k) - (2k)2

= 4k2 - 22.k2

= 4k2 - 4k2 = 0

Do đó 4(a - b)(b - c) = (c - a)2.

2 tháng 1 2017

Bạn học trường nào vậy Mk thay cai bài này la cua huyện mk nên hỏi vây thôi

3 tháng 3 2018

Đặt: \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=b\Rightarrow\hept{\begin{cases}a=2003b\\b=2004b\\c=2005b\end{cases}}\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left(2003b-2004b\right)\left(2004b-2005b\right)=4.-b.-b=4b^2\)

\(\Rightarrow\left(c-a\right)^2=\left(2005b-2003b\right)^2=2k^2=4k^2\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\left(đpcm\right)\)

3 tháng 3 2018

Đặt a/2003=b/2004=c/2005=k

Suy ra a=2003k, b=2004k, c=2005k            (*)

Thay (*) vào 4(a-b)(b-c) ta được:

4(a-b)(b-c)=4(2003k-2004k) (2004k-2005k)

              =4k(2003-2004).k(2004-2005)=4k2 .-1.-1

              =4.k2                                                           (1)

Thay (*) vào (c-a)2 ta được:

(c-a)2 =(2005k-2003k)2

= k2 (2005-2003)2

=k2 .4                                                              (2)

Từ (1) và (2)

Suy ra ĐPCM

nha

3 tháng 11 2016

Đặt \(\frac{a}{2003}=\frac{b}{2005}=\frac{c}{2007}=k\)\(\Rightarrow a=2003k;b=2005k;c=2007k\)

\(\Rightarrow VT=\frac{\left(a-c\right)^2}{4}=\frac{\left(2003k-2007k\right)^2}{4}=\frac{\left(-4k\right)^2}{4}=\frac{16k^2}{4}=4k^2\left(1\right)\)

\(VP=\left(a-b\right)\left(b-c\right)=\left(2003k-2005k\right)\left(2005k-2007k\right)\)

\(=\left(-2k\right)\cdot\left(-2k\right)=4k^2\left(2\right)\)

Từ (1) và (2) ->Đpcm

14 tháng 11 2016

Đặt Bằng a = bk 

c = dk Rồi thay vào biểu thức nha bạn

14 tháng 11 2016

thank you

23 tháng 10 2016

Áp dụng tính chất của dãy tỉ số bằng nhau :

\(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=\frac{a-b}{2003-2004}=\frac{b-c}{2004-2005}=\frac{c-a}{2005-2003}\)

\(\Leftrightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)

\(\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2\)

\(\Rightarrow\left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)

Vậy ...