K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

Có nha em, hai số tự nhiên liên tiếp đó là : 6 ; 7

#Chúc em học tốt

28 tháng 2 2021

Có tồn tại hai số tự nhiên liên tiếp mà có tổng các chữ số chia hết cho 13.

31 tháng 1 2017

Dễ thấy là trong các số từ 1 tới 899 có số mà tổng các chữ số của nó bằng s, với 1 ≤ s ≤ 26. Thật thế, vd. các số 1, ..., 9, 19, 29, 39, ..., 99, 199, 299, ..., 899 có tổng các chữ số lần lượt là 1, 2, ..., 26.
Gọi s(n) là tổng các chữ số của n.
Trong 1900 số tự nhiên liên tiếp k+1, ..., k+1900 có ít nhất 1 số chia hết cho 1000. Gọi số nhỏ nhất trong 1900 số đó mà chia hết cho 1000 là a*1000 ta có a*1000 + 899 ≤ k + 1900. Nếu s(a*1000) chia hết cho 27 ta có đpcm Giả sử s(a*1000) chia cho 27 dư r với 1≤ r ≤ 26, tức 1 ≤ 27 - r ≤ 26
Ta chọn số b mà 1 ≤ b ≤ 899 sao cho s(b) = 27 - r
=> s(a*1000 + b) = s(a*1000) + s(b) = (27n + r) + (27 - r) = 27(n + 1) chia hết cho 27 (đpcm)

 Trong 14 số tự nhiên có 3 chữ số chắc chắn có 2 số chia cho 13 có cùng số dư 
Nên hiệu của chúng chia hết cho 13 
Gọi số có 6 chữ số chia hết cho 13 là abcdeg (có gạch trên đầu) thì abc-deg chia hết cho 13 
Ta có: abcdeg + (abc-deg) 
= abcdeg + abc-deg 
= 1000.abc + deg + abc - deg 
= (1000+1).abc + (deg-deg) 
= 1001.abc + 0 
= 1001.abc 
Vì 1001 chia hết cho 13 nên 1001.abc cũng chia hết cho 13 
=> abcdeg + (abc-deg) chia hết cho 13 
Mà abc-deg chia hết cho 13 
Nên abcdeg chia hết cho 13 
Vây trong 14 số đó tồn tại 2 số mà khi viết liên nhau thì tạo thành số có 6 chữ số chia hết cho 13

tích nha

26 tháng 2 2021

Trong 14 stn có 3 chữ số chắc chắn có tồn tại 2 số chia cho 13 có cùng số dư nên hiệu của chúng chia hết cho 13 .

Gọi số có 6 chữ số chia hết cho 13 là abcdeg thì abc - deg \(⋮\)cho 13

Ta có : abcdeg + ( abc - deg ) = abcdeg + abc - deg 

= 1000 . abc + deg + abc - deg 

= ( 1000+ 1 ) . abc + ( deg - deg )

= 1001 . abc + 0 = 1001 . abc 

Vì 1001 chia hết cho 13 nên 1001 . abc chia hết cho 13

\(\Rightarrow\)abcdeg + ( abc - deg ) chia hết cho 13

Mà ( abc - deg ) chia hết cho 13 nên abcdeg chia hết cho 13 .

Vậy trong 14 số đó tồn tại 2 số mà khi viết liên tiếp nhau thì tao thành số có 6 chữ số chia hết cho 13 .

22 tháng 11 2015

 Trong 14 số tự nhiên có 3 chữ số chắc chắn có 2 số chia cho 13 có cùng số dư 
Nên hiệu của chúng chia hết cho 13 
Gọi số có 6 chữ số chia hết cho 13 là abcdeg (có gạch trên đầu) thì abc-deg chia hết cho 13 
Ta có: abcdeg + (abc-deg) 
= abcdeg + abc-deg 
= 1000.abc + deg + abc - deg 
= (1000+1).abc + (deg-deg) 
= 1001.abc + 0 
= 1001.abc 
Vì 1001 chia hết cho 13 nên 1001.abc cũng chia hết cho 13 
=> abcdeg + (abc-deg) chia hết cho 13 
Mà abc-deg chia hết cho 13 
Nên abcdeg chia hết cho 13 
Vây trong 14 số đó tồn tại 2 số mà khi viết liên nhau thì tạo thành số có 6 chữ số chia hết cho 13

7 tháng 4 2017

ai tk mình đi đang bị âm điểm nè

cảm ơn các bạn nhìu!!!

11 tháng 3 2016

Trong 14 số tự nhiên có 3 chữ số chắc chắn có 2 số chia cho 13 có cùng số dư 
Nên hiệu của chúng chia hết cho 13 
Gọi số có 6 chữ số chia hết cho 13 là abcdeg (có gạch trên đầu) thì abc-deg chia hết cho 13 
Ta có: abcdeg + (abc-deg) 
= abcdeg + abc-deg 
= 1000.abc + deg + abc - deg 
= (1000+1).abc + (deg-deg) 
= 1001.abc + 0 
= 1001.abc 
Vì 1001 chia hết cho 13 nên 1001.abc cũng chia hết cho 13 
=> abcdeg + (abc-deg) chia hết cho 13 
Mà abc-deg chia hết cho 13 
Nên abcdeg chia hết cho 13 
Vây trong 14 số đó tồn tại 2 số mà khi viết liên nhau thì tạo thành số có 6 chữ số chia hết cho 13

chuc ban hoc tot nha -_-

29 tháng 11 2018

Gọi 4 stn liên tiếp đó là:

a,a+1,a+2,a+3 ( a E N)

a có dạng: 4k;4k+1;4k+2;4k+3 (k E N)

+) a=4k thì chắc chắn sẽ chia hết cho 4

+) a=4k+1=> a+3=4k+3+1=4k+4 chia hết cho 4

+) a=4k+2=> a+2=4k+2+2=4k+4 chia hết cho 4

+) a=4k+3=> a+1=4k+3+1=4k+4 chia hết cho 4

Vậy trong 4 stn liên tiếp luôn có 1 số chia hết cho 4(ĐPCM)

29 tháng 11 2018

Câu b giải tương tự thôi